煤体多尺度孔裂隙结构改性多场耦合作用理论

Multi-field coupling theory for modification of multi-scale pore-fracture structures of coal mass

  • 摘要: 不同尺度孔裂隙的发育与赋存是煤储层矿体的基本特征,也是储层气体储集与运移的核心场所。原位改性采矿技术施行的载体与成效也恰在于不同尺度孔裂隙之中。深部煤与煤层气资源安全高效开采的关键,始终在于不同尺度孔裂隙结构的改造,以及其中流体吸附运移特性的改善。针对传统改造技术对深部煤储层适应性不足、改造机理不明等问题,系统阐述了从微纳米孔隙、微裂隙到宏观裂缝的煤体多尺度孔裂隙结构特征,分析了不同尺度孔裂隙结构对煤层气解吸、扩散与渗流过程的影响机制,提出了以“流体赋存运移状态改性”(增强解吸与流动性)与“煤体孔裂隙结构改性”(提高渗透性)为核心的2种改性原理。在此基础上,进一步阐述了2类多尺度孔裂隙结构改性技术方法:一是基于竞争吸附和热效应作用的强化解吸型改性,即通过注入其他强吸附性流体或高温流体来降低煤体对CH4的吸附能力,强化气体解吸;二是基于物理–化学改性作用的结构增渗型改性,即依靠溶蚀扩孔与压裂造缝来改造孔缝系统,提高气体渗流能力。以超临界CO2流体(ScCO2)为例,通过系列试验揭示了 ScCO2 作用下煤体在吸附膨胀、溶蚀增孔、力学弱化与压裂造缝等多机制共同作用下的多尺度结构演化特征,以及其对煤体吸附解吸能力与渗流特性影响规律,进一步建立了煤体多尺度孔裂隙结构改性与渗透性演化的多场耦合理论框架,为深部煤储层精准改性、超临界流体强化增渗及 CO2 地质封存提供理论依据。

     

    Abstract: Multi-scale pore-fracture structures are widely occurred in coal reservoirs, and serving as the main spaces for gas storage and transport. Restructuring these multi-scale pore-fracture structures to enhance fluid adsorption and transport behaviors is critical to the successful implementation of in-situ modified mining technologies for the safe and efficient extraction of deep coal and coalbed methane resources. To address the limitations of conventional stimulation techniques and the unclear modification mechanisms, the multi-scale pore-fracture structure of coal mass, from nano-pores and micro-fractures to macro-fractures, and their impact on gas desorption, diffusion, and flow are analyzed. Two core modification principles are proposed, one is enhancing desorption and transport by modifying the fluid occurrence state, and the other is improving the permeability by modifying the pore-fracture structure. Two multi-scale modification approaches are introduced, one is enhancing the desorption through competitive adsorption and thermal effects to reduce CH4 adsorption capacity, and the other is enhancing the permeability through dissolution-induced pore expansion and fracturing-induced fracture creation. Using supercritical CO2 (ScCO2) as an example, the experimental results reveal the evolution of multi-scale pore-fracture structures in coal mass under ScCO2 injection, involving adsorption swelling, dissolution, mechanical weakening, and fracture generation. These processes collectively affect the adsorption and transport properties of coal mass. A multi-field coupling framework is established to describe mass transfer across scales, and porosity–permeability evolution. This work provides a theoretical foundation for targeted reservoir modification to enhance permeability, and CO2 geological storage in deep coal seams.

     

/

返回文章
返回