深部煤层(岩)气渗吸置换开发机理及其实践意义

Development mechanism and practical significance of deep coalbed methane (coal rock gas) infiltration and displacement

  • 摘要: 鄂尔多斯盆地东缘深部煤层气(又称煤岩气)先导试验水平井吉深6-7平01井首试大规模水力压裂,实现了重大突破,带动了全国深部煤层气勘探开发,已成为非常规天然气增储上产重要领域,但水力压裂除增强渗流能力外,其对甲烷产出作用机理尚未理清,现场试验代价高且存在一定盲目性,制约了深部煤层气技术攻关方向和高效开发。通过物理试验与理论模拟相结合方法,开展了深部煤润湿性特征与界面分子作用机制分析,采用在线核磁共振扫描、真实深煤大分子建模、水相侵入驱替分子动力学模拟、不同含水条件煤岩等温吸附、不同矿化度条件渗吸试验、扫描电镜等手段,揭示了深部煤层气压裂改造背后的“压驱−渗吸−置换”作用机理,证实在大规模水力压裂过程中已发生气水渗吸置换、吸附态甲烷转为新的游离气产出的客观事实,促成了深部煤层气井初期“游离气为主”高产现象。即大规模压裂除了煤层增渗作用之外,更重要的是相当一部分吸附气通过气水“渗吸−置换”转为“新的游离气”,与原始游离气一起,共同被驱替出来。研究结果表明:基于矿物分析、高温高压润湿性试验及深煤真实大分子建模测试,深部煤岩因亲水性黏土矿物充填及含氧官能团的存在,呈现宏观整体亲水、微观局部强亲水特性;基于等温吸附试验与高温高压在线核磁共振扫描试验,压裂液能够显著削弱甲烷与煤分子间作用力,含水率每增加1%,最大吸附量平均降低1.82 m3/t;在液气压差为5 MPa的条件下,压裂液即可侵入岩心驱替出70.84%的游离气,并通过竞争吸附置换出10.42%的吸附气,推测高压差条件下置换和驱替率将更高;基于分子动力学模拟,在高压差驱动下,压裂液侵入纳米孔隙产生活塞式驱替效应,促使吸附态甲烷转化为游离态,能够将97.8%的甲烷驱替出纳米孔隙;基于不同尺寸毛管力试验分析发现,当煤基质孔径小于5 nm后,气液毛管力呈现陡增趋势,在原位和压后增压条件下,2 nm的强亲水(润湿角30°)和弱亲水(润湿角70°)孔隙中的毛管力可分别超过40.1和15.8 MPa,形成强烈的渗吸驱动力;基于矿化度分析与渗吸试验,因压裂液和地层水间的高矿化度差异,形成化学势梯度导致的渗透压作用可进一步强化渗吸作用,渗吸量提升46.4%以上;基于不同尺寸煤岩解吸试验,煤岩越碎,越容易解吸,煤岩尺寸由1.3 cm增加到5.0 cm时,解吸到达平衡时间延长14倍以上,吨煤累产气量下降了15.6%;基于试验和模拟结果,揭示了深部煤层气大规模压裂过程中压驱−渗吸−置换机理,耦合了“造(延伸)缝−增渗、增大接触面积、连通微孔、自发渗吸+置换、加压渗吸+置换、高压驱替”等多种促产出作用,明确了深部煤层气井产气贡献4个来源及阶段主力贡献,并依此提出了构建“密织缝网+增强连通性”压裂工艺、差异化焖井以强化渗吸置换作用效能、适时注润湿反转剂以调控减缓水锁效应、控压延长高压排采期等4项生产策略,同时明确了下一步3大攻关方向。研究成果可为深部煤层气井压裂改造技术攻关、排采制度优化和提高单井产量提供重要科学理论依据。

     

    Abstract: A pilot test on the horizontal well JS6-7P01 in the eastern margin of Ordos Basin achieved a significant breakthrough in the first large-scale hydraulic fracturing of deep coalbed methane (CBM, or coal-measure gas), promoting nationwide exploration and development of deep CBM. This advancement has positioned deep CBM as a critical domain for unconventional natural gas reserves and production growth. However, the mechanistic role of hydraulic fracturing in methane production, beyond enhancing permeability, remains unclear. High costs and operational uncertainties in field trials have hindered the optimization of deep CBM technologies and efficient development. To address this, comprehensive physical simulations, numerical modeling, and theoretical analyses were conducted, including wettability characterization and interfacial molecular mechanism analysis of deep coal, in-situ gas-water occurrence monitoring via online nuclear magnetic resonance (NMR) scanning, realistic macromolecular modeling of deep coal, molecular dynamics simulations of aqueous-phase invasion and displacement, isothermal adsorption experiments under varying moisture conditions, imbibition experiments under different salinities, and scanning electron microscope. These efforts aimed to elucidate the “pressure displacement-imbibition-replacement” mechanism underlying hydraulic fracturing in deep CBM reservoirs. Key findings include:Hydrophilic characteristics: Mineralogical analysis, high-temperature/high-pressure (HTHP) wettability experiments, and macromolecular modeling revealed that deep coal exhibits macroscale hydrophilicity and microscale strong hydrophilicity due to hydrophilic clay mineral filling and oxygen-containing functional groups. Methane adsorption reduction: Isothermal adsorption experiments and HTHP NMR scans demonstrated that fracturing fluids significantly weaken methane-coal interactions. A 1% increase in moisture content reduces maximum methane adsorption by 1.82 m3/t on average. At a 5 MPa gas-liquid pressure differential, fracturing fluids displaced 70.84% of free gas and competitively desorbed 10.42% of adsorbed gas, suggesting higher displacement efficiency under elevated pressure gradients. Nanopore displacement dynamics: Molecular dynamics simulations revealed piston-like displacement in nanopores under high-pressure gradients, converting 97.8% of adsorbed methane into free gas. Capillary-driven imbibition: Sub-5 nm coal matrix pores exhibited steeply increasing capillary forces. For 2 nm pores under reservoir and post-fracturing pressure conditions, strong hydrophilic (30° contact angle) and weakly hydrophilic (70°) pores generated capillary forces exceeding 40.1 MPa and 15.8 MPa, respectively, creating intense imbibition driving forces. Osmotic enhancement: High salinity contrast between fracturing fluids and formation water induced osmotic pressure via chemical potential gradients, enhancing imbibition capacity by ≥46.4%.Desorption kinetics: Bigger coal fragments (1.3 cm vs. 5.0 cm) extended desorption equilibrium by more than 14 times, and decreased recovery by 15.6%.The experimental and simulation results above revealed the mechanism of “pressure displacement-imbibition-replacement” during deep CBM large-scale fracturing, which is a synergistic process combining fracture propagation, permeability enhancement, contact area increasement, microporous connectivity, spontaneous/pressure driven imbibition-replacement, and high-pressure displacement. Four gas production sources and the stag’s contribution were identified, leading to four optimized strategies: dense fracture networks, differentiated well shut-ins to enhance imbibition, wettability modifiers to mitigate water blockage, and controlled-pressure extended flowback. Three future research priorities were outlined. These findings provide critical scientific insights for advancing hydraulic fracturing technologies, optimizing production protocols, and improving well productivity in deep CBM development.

     

/

返回文章
返回