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Abstract: China has abundant deep coalbed methane (CBM) resources with significant potential for development and util-

ization, which is expected to become an important supplement to national natural gas supply. However, the current deep
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CBM development technology is still in the exploratory status, and the reservoir stimulation mainly relies on massive frac-
turing, which suffers from significant differences in gas production rate and rapid production declines. The major reason
behind is the lack of a stimulation technology that precisely matches geological conditions. “Orientation perforating + tar-
geted fracture controlling + precision fracturing” is expected to become an effective fracturing method that is geologically
compatible with deep CBM. This paper proposes seven orientation perforating patterns for deep coalbed horizontal wells:
directional horizontal, 4 o'clock—S8 o'clock orientation downward, fan-shaped orientation downward (upward), fan-shaped
orientation downward (upward) + horizontal (240° perforation pattern), and straight upward orientation (downward). To
investigate the uniformity of fluid and proppant distribution between and within clusters in deep coalbed horizontal wells
under different orientation perforating patterns, this paper utilizes a coupled computational fluid dynamics and discrete ele-
ment method (CFD-DEM). A fluid-particle transport fluid-solid coupling model for horizontal wellbores is established.
The study examines the characteristics of inter-cluster and intra-cluster flow distribution and proppant distribution under
different orientation perforating patterns, flow rates, sand ratios, cluster numbers within one stage, and graded proppant in-
jection. The results show that the uniformity of flow and proppant distribution varies under different orientation perforat-
ing methods. The 240° orientation perforating (fan shape down or up + horizontal direction) shows better uniformity in
flow distribution between holes, and the 240° orientation perforating and 4 o'clock—S8 o'clock orientation downward per-
forating show better uniformity in proppant distribution between holes. High pumping rates (> 16 m*/min), low sand ra-
tios (maximum sand ratio during the sand carrying stage < 25%), a higher proportion of smaller particle-sized proppants
(0.212/0.109 mm : 0.380/0.212 mm : 0.550/0.270 mm =6 : 3 : 1), and 3 to 4 clusters within a stage are conducive to the
uniform distribution of flow and proppant between holes/clusters, enhancing the balance of reservoir stimulation. Field ap-
plications in the eastern margin of the Ordos Basin for deep CBM have shown that orientation perforating yields higher
gas production than conventional spiral perforating, with the “fan shape down + horizontal direction (240° pattern)” orient-
ation perforating showing the most significant increasing in gas production. It is recommended that deep CBM reservoir
stimulation be designed based on the position of the well trajectory within the coal seam (especially its relative position to
bright coal), implementing a “one-cluster one-policy” perforating design to induce directional fracture initiation, targeted
communication with the "geological-engineering" sweet spots, and achieve the stimulation objectives of “directed guid-
ance, taper design, uniform proppant placement and effective support”. The key findings are expected to provide theoretic-
al foundations and parameter references for high-quality and efficient fracturing in deep CBM wells.

Key words: deep coalbed methane; massive hydraulic fracturing; orientation perforation; flow distribution; proppant
transportation; CFD-DEM
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Fig.1 Orientation perforation patterns in a deep CBM horizontal well
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Fig.7 Contours of proppant and flow distributions in various orientation perforation patterns
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