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Abstract: The formation and evolution mechanisms of coal mine water quality are intricate, significantly influenced by
multiple processes such as hydrodynamics, hydrochemistry, and biodegradation. A comprehensive investigation and elu-
cidation of the mechanisms is theoretically crucial for the prevention and remediation of coal mine water pollution. The
hydrogeological prototype of a goaf in a coal mine in the Ordos Basin is choosen, and a laboratorial physical model and a
coupled hydrodynamic-chemical-biodegradation (HCB) milti-field numerical model for the goaf are established, focusing
the water level rises and biogeochemistry processes. The research results demonstrate the significance of multi-field coup-
ling effects on mine water quality. The water level filling up results shows that the matrix-fracture dual-porosity model ef-
fectively matches the water level in the goaf with a simulation error of 9.9%, which is much more accurate than the theor-
etical and the single-porosity model predictions. The simulation results of the hydrochemical field are relatively consistent
with the experiments, with relative errors of 3.0%, 21.0%, and 6.2% for SO?[, HCO;3, and pH, respectively. Results from
different time periods indicate that water-rock reactions and microbial activities are not significant during the water stor-
age process. After the goaf is filled up, the hydrodynamics almost stagnate, but the hydrochemical and microbial fields are
relatively active. The pyrite oxidation reactions in the No.2 and No.3 coal seams increase the concentration of SO;~ by
about 24.6%. In the later stage, the water environment in the goaf evolves into weakly acidic and anaerobic reducing con-
ditions, and the microbial degradation becomes prominent, reducing the SO~ concentration from its peak by 6.1%. A cer-
tain “self-purification” ability of mine water in the goaf after closure has been confirmed. By adjusting the microbial meta-
bolic rate constant, the proportion of SO;~ degradation can be induced up to 61.6%. In actual engineering scenarios, this
target can be achieved through some strategies such as supplementing enough dissolved carbon nutrient substance and arti-
ficially establishing a closed anaerobic environment. This study expands the multi-field coupling laboratorial experiments
and numerical modeling techniques to the formation and evolution of water quality in coal mine water in a goaf, and the

constructive conclusions can provide theoretical guidance for the prevention and remediation of coal mine water pollution.
Key words: coal mine water; hydrodynamic; hydrochemical; biodegradation; multi-field coupling
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Fig.1 Schematic diagram of the concept for coal mine water
storage in goaf aquifer !
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Fig.2 Setup of the laboratory similar material experiment
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Table 1 Distribution of lithology, mineral volume ratios and mean porosities in the laboratory similar material experiment
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Table 2 Main reaction equations related with coal mine water
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iy Yl CaCOs(s) +H* Ca’* +HCO; 1.854
B Al,Si;O5(OH), + 6H* 2A1%* 4 2H,Si04 + H,0 —39.824
oy Si0; (s) == Si0; (aq) -3.745
BRI Ko.sMgo.25Al) g (Alg5Si35010) (OH), () +2.3H" +2.3H,0 ——=
—47.328
H* +0.25Mg?* +0.6K* +3.55i0, (aq) + 0.4H,0 +2.3A1(OH)3
E2 el Mgs 5Fes 5A15Si3010(OH)g (s) + 10HY ——=
4298
. 2+ 2+
YR 3Si0, (aq) +2.5Mg?* +2.5Fe** +2A1(OH); + 6H,0
iRy KAISi3Og (s) + 4H* K* + AI** + 3810, (aq) + 2H,0 ~22.910
e NaA18Si30g (s) +4H" == Na*+AI**+3Si0; (aq) + 2H,0 2765
SR FeCOs (s) +H* HCOj +Fe?* ~0.125
B FeS; (s) +3.50; (aq) + H,O Fe* +2S03™ +2H*
FeS; (s) + 14Fe™* + 8H,0 —= 15Fe?* +2S0;™ + 16H*
Fe?* +0.250; (aq) + H* Fe’* +0.5H,0 217.390
Fe** +3H,0 Fe(OH); (s) + 3H*
DOC 30,(aq) + C3H505 — 3HCO; +2H*
LA
BRREL 350%™ +4C3H50; — 4C,H30; +4HCO; +3HS™ + H*

T 5SS g aqMIRREM . SOMREMRM, RAFREREE AR AU NIRRT RN B S H T ABRC 528 K i i
PUREMTATRR, WR(1S): BERET(FeS) UM . Fe® Hus A /K i B ALk,

SN AR BN, ABATEIRAT b B 25 S EAZ AL . ARG I AR
AH P AR BB A AL B R, R

N;
¢=1—Z¢s—¢u (22)
s=1

K, o W WIEF N, 8 P80 o, WA 51
J N B L AAARL

)2 BRI T ) A X 18 5 SR AR T AL Y Car-
man-Kozeny A ZU144

%a—%ﬁeq3
(1-9)* \9o

X, ko A1 g A TRIGPIER 55 R AFLIRR
3.2 E\HESWAE
3.2.1 HUEEHOE

BB X H KK B %5 A Y 22 6
A% H TOUGHREACT #4E 472531 i3 %
A R — B o8 e Bk sk i, Sel i 2) 7
23 AR v, RV, R h— B Mooy R . IR
e S ECh £ =& A oS R AR, TRl

Rlnc+l :M§+1 —Mﬁ—

At
v (ZAXF’;“ + an’;“] =0 (24)

a

(23)

Forp, BAR kAWFEZE RG] T AR n B BRITHAPR, x N
JITAT 5 350 n MARHY BATT; A, VAR B TT 2 [A]
AR AR . X TRaB 2 (24), eIy A% 202 S
BLRE R, R AR W AR BOE AOR A, & R k22
R /INT B SR

P2 3 RNl A 9 0 1A BB R 2% 1 2 T,
H— KR e i %, S5 i e a0 XM
([ S T VPR ) DA K= 2P U LU B 1 8
TR, R (1) 2ol

1 1
j,k+l,s+§ j,k+l,s+§
At 1+ L Dix (Cx —G
Jrtlst5
— E An|ubiCo T =
Va
nx

dnx

AMP! — g Ar— RIMYSAL j=1,2,-+- N
(25)
i, N o RAEA 2 s s i BOE S AE S R
61205 s IR VGG Dy T A S HOREL do
JE n Al x D 2 R B S RYS R B2 R 1R
(e
ST Jey - IR £ S Bl g S AR
IRAHES A TARVE R AR | 0 W38 Ak DL -1 5 B0
Jieg, i E R G TR A . RIIR T2, ARG
AT R D
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Tj? = C?+Zvj’cCg+Zvj’eCB+Zv,;gC2 (26)

Hrp, FAR 0 RRWIGRETZ]; Th5 j. e, e il o NHIR
W51 KA G PSS . B 12 )
v AR A AT R . — IR K R, A 1Y
SRR N

T,=C;+ Zvj,CCC + Z VjeCot

D v (€)= a) 27)
Forh, vy, WU R, BARIAR L (15),
WIHAYRBERN At 165220, BIRALEL S TR 2 T 6 2R

TJ—T;) = ZAVj‘IVWAt (28)
I=1
Krh, TR 1 FRRIKARA S SO R T N, IR o
S B 728 ROWANERG ry, SRR Y SN B 7 S R, D
X (14),
i — L (26). (27) FRAZL (28), 15 31k i 4%
FS=(Ci=C+ ) v(Co— C+

N,

FILaHiv
IKAHZS A G
D vielCe=C= Y vir At -
e o

WA UTE C1-8)

Divinar =0,j=1,2,+,N (29)
!

4
VILRAL Y 8 )2 FONE

Hovh, FORWIR ALy j O EERR 22 . 5 (29) L1
N AT o A TH i DTTE T A 08 500 16 20 4
WRE C oK%, Fim b N, AN T S A, K
NN AT o R —E T ARk AR, A5k 2238 3 il
BEVRIE, TEAHR A2 72 D SCHR (28]
322 BIAREAL M SEL

B AT TR 1) A O AR 8 2 A 5 T S AR AU
BEARAIXT N o 25 P BRASS AL R B A AL 3R 43
H TR AW RIS . b 2 S BT
b IE AR 3 5. K20 WA R X
SEATS (XRD) MR, WS 5 W26 1, o #g
R BB T 2 SRR 3 S0 BB AR FH R
FALBRABIAL, B LR S % 3R 1 PR SEIE, 246
LBRAG— I B 0.9, R EBIAT S HACH 5%,
B 2B EIIE d = 0.02 m, VR AALERAH HEAL

WD E(B) 15)

¥ B RY ) 4R 1 2 i R B K AR §E Blake-
Kozeny 233 AREAK 22 B0 555, BT 5 Bl K BEHEE
BB, WA 5) IR L XN ER &, IFUA
e FB T B B 2R B R, I 20 o BB B R A
5x107" m’, BB ERAE 5310 7 m’,

W HIKOK B AR K 3h 1135 . KA S Fni A= )
Y =G TAERBR LG SR WE 3 i, 074
VS AR DTVE 5 R A BFL B R O, 3 MisE Ay BTig i %
KN, iz FE R F @ 6 A9 Carmen-Kozeny ##fiids, UL
(23). WMAWIERIPLRIEBC E A, 5 H A% R
YfE it DOC E AL SOy ik 5, BeAb, A Kt
TP T BRI, 77 A 1 A ) B RS FE N TR G o
] g G S LA IR s 26070, (EA SR g6 v ik
Y RN, SR 20 B 5 R KR 20

W KB K BN J 1372
Y- 2 R AR

g

KN I3 (AR RE)

R X SRR, ]
AR AL BRIS A
[ AmEmBERE R
O 00 s AR 25 1
v A
Feits by vl
KA Ok R )

—_— BRI G SR
VLR Lo RS B AE —  BiEE
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VULV RO 22 R I
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Fig.3 Schematic diagram of coupled multi-field modeling for

coal mine water quality evolution

TESEbRA: =l A ey, (B AR T MR G5 RS, —
0L N 25 I N THEK, &2 K AL TR A A 45,
G . ZETHBEST Y, © 2 IR 25 K A
L KRR R EL 2 ALK, FERIN A 1 KRR F2 20K
BT IR, AR 3. bk 7285 SO4~Na,
SOy ik B iy HLR 5508k . BEXTEP A & 1
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PN ZEEE: AT K OK T B AR 7K 80 11 57K A2 G~ A= My i 6 A -5 BB 949

TP 1) XRD MK A& X264 F . mEk
W9, IR iR A2 7K b s SOL Jo ki B 11 Ji DR T
AE SR KRR #MATR I ZE R R A S . % 3
rF B B - HL ARk Bl 4.48x107 % mol/L, FH B L fr vk
JE 0 4.39x10°° mol/L, B BH & ¥ Ho 15 P A AH X5 22 /18
F 2.1%. HEPE AR REER T, &k sE ik
J5 HE RSO3 L HY Al Fe(OH); ULVE . RTIFFE X A4
ZRIK L RAS XK AR IR SR B A
PEAFEUREIR, & PR 28 X 3B K 2 e &
By d5e A A1 0k K v B R £ 8 JEL R (SRB) FY
e B S A 1.43%107"° mol/L, BUEAAN T804 4 1Y) o
M 2x1077 mg/cell™, NIAEIREE /R R A 1.2x10" g/
mol, K G4 9= (Biomass) ¥ U Jit & ¢ FE e 55N
0.172 mg/L,

®3 TREKEEKOEZNER SRR

Table 3 Detection results of the major chemical components

in the water recharge of the roof aquifer mg/L

6 I3 Jrigiieridi 3 LioallBITt Jrigiieridi s
AlO; 15 K* 27.1

ca?t 165.8 o 2130.1

cr 204.7 HCO3 357

F 1.6 Mg 8.4

Fe?* 0.5 8i05(aq) 17

pH 8.1 DOC 1700

Na* 1029.9 Biomass 0.172
0,(aq) 400

EH IS T SRR (B 4), 18y J7 1 A% 2 5L
LK 12, R 0.03 m, 58 60T xz $I . B
RRCSHFSZZ N, K 1.5 m, & 0.75 m. %
E R x 7 2 %153 30 4RI, B4 A% 0.05 m;
z 7 AR 7 A 2R, S YR AR RN e
MR E R 1590 A4 FREAEIET 30 d 42252 Tl % /K2
KR, AMARSH DAY, E IR TE A
ERIEARLE AL 10° £ S48 KBS R EAK, &
KA 1<30d I, FIRFIEAR 0, =5.01x10" kg/d; t =
30 d B}, & Oy, = 0o BRI R A MY EOK 2 R iR
SFUBRIRRR, DR AR RS | i LA A b — A “IR R
FER” B (V=10 o), FEEILL 3 SHEEAANE N 2z =
0 2181, 24 30 d Z247 KA > 0.75 m B, K22 A 3R
NIZARFTCTF KA o BEAk, B0 B R R R
4 20 kPa, DAL TR AR 1R A S B S0 A 21K
(ipug .

WO, HE
REEEEREEEREEREREERN BN
VA
b
25

Wil
e
Rk
3TH

R4 BORLAPESZ 5 Mg 5
Fig.4 Model lithology stratification and meshing
3.2.3 REISMTIE
i 30 R0 AR UL 4 R 1R 22 R JH 9N AT &R B (Nash-
Sutcliffe Efficiency Coefficient, Exs). ¥ 7Hi%22 (Root-
Mean-Square Error, Epys) F1F 25 4t XF H 43 b 1= 22
(Mean Absolute Percentage Error, Eyap) T4, T8 R

Z (Xexpt - Xsim)2
Z (Xexpt - )_(expt)z

Erms = \/Nid Z (Xexpt - Xvsim)2 (31)

1 Xexpt - Xsim
Enpp = — ) |22 2sim
VAP ( N, d Z Xexpt

Hor, Xy FRI B 5 Xep M IRI T3 ME; X I
BEPLEE A 5 Ny HEE S ANE XW T Es 5, M4
Ens = 0.5 B, FRMERIT] LI4EZ; 24 Eyg = 0.65 i,
FORKBEH AR, Y By = 0.75 I, FoRBEVR A
Egs B/NFRBHIR 2580/ N | 45 R T5E, (0 Epys 5
IEE B RA Ko Eyap F U AR E Y
SRR 2, (N UL AR R ] 5

4 LRSHFTIEL

41 ITEEEXEHNEKTRE

FEARSCER 2 543 BRI S 3 A i s T AR
SReas X BUKOK A H6 T i B2 Bl A 1] (9 AR 4k, S5 e | 5
PLEERIEATXT L, WA 5 iR . BT HRS R A
SRR LB — A, IR KR RR 25 X
IR ANE T, ST T AR S X A, FLER R
] [ PR 2R, AL 2 =0 ~ 16.5 cm 4N
KA KPS T5 A AN 3 502, % B i AR
i, FLERREK, Mg /K BE J15i . AR oIz B
JE G — AL N FLERF N 22.25% B AN TR, EoKid
FEAK A —Rsf 1] iR ARG 2R o KA [l T3] 4
ML B, LB g, DT K A R T %

Exs=1-

(30)

) x100%  (32)
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Fig.5 Comparison of experimental, theoretical and simulated

head alues of head during mine water rebound
s,

25 ARSI Z2 W (0 [ 3AE N, {05 SR TR b 2 i
IR LB R A2 o 18] 5 SR UIHET B A A
T KA ] RS e 57K B rhoR Az B a3, (3
T ZZATS IR o RS IXAb K L EAR A T0 )=
FLBE, AL ] TR T B2 45 T4 B FL B R e ) 224k
XL B T BE A A0 DL 52 B A T v (R 3 38 Y
i Kz 0], 18] 5 o2 R W RUAL BB B RLADLRS JEE fi
ey, T AL U R R R TR A5 RARZER . AR
RUTGOI A A GE 18 22 W& 4, Hrh AL R AL By >
0.75, H. Eyap < 10%, INHBSISE L5 AT 5E

R4 FEEEKAEFATERNE RRE ST
Table 4 Error statistics of predicted head from

different models

TR R Exs Eppms/cm Enap/%

Bl e = 0.43 16.1 335
AL BT A 0.64 12.4 57.4
WAL AR AL 0.97 34 9.9

42 HHKBIKRELEDE
4.2.1 RIS EAULGIRAT

B0 ik A o Bk AR R 4L (k). DOC
S HL (KDOC) | BRBR SR 1A i R L (k) LA
Bt A= A 3 (b) AE Ry G5 SR AT T R, 3L
B s AT AR O S BRI C A B g i e B,
EH ST RIS, SR T S 0 R e e
FHESEBUE, WA 5. A7 Sk, Sk e R
P I R 4R Ak S5 R T 1) 08 O by K2 = 3.02
10 mol/(m” - s) FIk" =2.818x10"° mol/(m” * 5). 5
EA WA, ZEH R KR— g, Al

SR T IR RS A5 2, A SO g 2
AR B P AR . A, 1K IR A U E Y
St T I AR, DR A P i e R AR R A
iR SUN AR LT DO/ NS § 1 8

®5 BEXESHYEE

Table 5 Value of the critical parameters in the model

B S Wt
HHH KL /(mol - (m? - 5)™") 1.6x1077
ﬁ%ﬁi@kkzo;RH /(mol * (m? + s) ") 3.5%x107°
DOCHALAROC/s™! 1.2x107
ARk /s~ 3.0%10°°
MR b/ 43%10°

WD U TE 2 SRR 3 S 2 AL, X 2 4
R RRER R VR E LT sTk R . R 3 SR
R AR (11.58%) & 2 S B2 (5.74%) 1Y
2 5%, (R BRI SR A 52 27K P i i S e A R
SRz X E 7K G R v Yty SR, AR AR R I
B A, PR 3 52 R AR B AN G 2 S
2. EFB 2 SHALE (z =40 cm) BYSOY |, HCO; 5
3 SMEALE (2= 2.5 cm) 4bAY pH, Fe > RIS i ik
VR T SRS ST AT T L, v 4% 1 o U A B
IKAH AN [ A7 14 055 B VR B e v, A 38 X6 7 114 7K A
KB XHEEFE 6 fis

R, SO B vk B Mk FEAEHT 30 d PR AT o3
JEHEVR B 1 800 mg/L H4JNE 2 455 mg/L, {EAE 1L 5
BRI 30 d SO T vk B PR 4 in B MA K IR, I
PRRFRE HRIR S B T o 3 sk Bl 25 S I A 4
M 2 rPAS B 3 — Lo B VR 1 B R AL, (R R ) L ik
ARSI, 1 A5 BV E R . 30 d Z )5 RS X
B, ViR SRV B I TR AL, SRS DX ] PR e AL
200 d A= 47 SO; [t ¥ i T8 B WA AFL, AT T T0UH 4 24
K, 2 5 M2 SOT i ViR B AE i U4 S 8 N 2 24.6% .
I J5 SOF o vk B 1 B 453 A, #E 200~300 d [7] SO
Jo o v JE AR 2 6.1%, FRARH 29 2.09%10° mg/
(L +s)o BV b, BAIEE IR 5 R V6. i
PRk e vk 1 FHRIRRA R 4, 2™ &kl DOC
AL R PN AR A L S S DR R FH AL )
WIE, bV E A ERR G L

T BFGEEEAT T R G R SR ™ S /K I8 LMLl 1 B
58, BB HGH R4, K BRSO 3805 1 4
PR TR , K H RSO 14 S BRI 3, HL i
AR R BN, 1] 6(b) FHHCO; 8 —1%
FHCO; F1CO; Jfi i Wk J&, B4 45 S /R 50 d 25
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Fig.6 Comparison results of simulated and experimental concentration

HCO; £ HL N a3, S5ASGRIZE REAV & 07
FEIK A HCOS BT 3 ¥ B2 A9/ )N, — 7 T 2 R o 3K
55 R R Ak, 3 — T RN 7 A TE 5 A%
PR RRAR FUTUE 18] o BEAR, pH &8 H 7K 3 Ak Y
HEARbR. & 6(c) X LE TRLUFIR G 3 S Z /Y
pH, Bl R IABLHIP) 4R B %) pH PR b T+ % 8.43, i
i T TACRN 25 7K 19 pH {7 B 7K ek R R 5 s P ok
b, pH W 2485 T R, IFFRRETE 6.94 47, Bl 6(d)
¥ 3 SRR Fe® B T R e SRS St
Frxt b, Fe®™ o e B AE T 78 i B S R4 BT
P (A B Fe™ P R BE RO/, 1 RO TR Ak
BT ARGE, TR TR .

PRI E I BN B, IS, RIS, X
BB ST 3 AR AR, JTAR A58 X0 bz 1) B %)
PRI S5 AL, AU ZE R I —— X N, AR
R (30)~(32) HE TS R AR E A SR 22,
W3 6. REGEHERM, SOT BHSUR fe s, FXT
BR22{X 3.0%; HCO; Bl iR 255 K, MXF iR 2285 T
21%; pH BEAULZE Fo i 25 5K, (EAR T2 22 418K AT LA 422
%o MR L, SO | HCO; . pH #l Fe’ ' T 4 5t 5
REHERIRZE/INT 30%.

R 6 W HKKERUIRES FREEMTNERREST
Table 6 Error statistics of the predicted concentrations for

different ions during mine water quality evolution

TR £H 43 Exs Eus/(mg - L™ Eniap/%
so%- 0.76 115.50 3.0
HCO; 0.44 84.85 21.0
pH -431 0.54 62
Fe?"3* 0.94 425 27.2

4.2.2  BRFTOLIE KoAKCA RO

T HKE KSR B A R p, Y rE R 5
(7K RN o AR SCHE i R Bk 8 fL AN SOy i i
WAL, 5 I8 T 0 W i UV Rk 1 A Ak 55
S, A JEPH B8 2 e FI R i 45 6 A5 HA B2 2L
T ST PR BB A Ay = fi— fror FETP S R o
Ik 200 ) AR 3 B8, S A0 B I 200 ) AR O
W) 2 S A2 A 3 5 R B R A R R
16 Af;, Bt s [R] A8 46 40 & 7(b). () i, s ] I
2 SRS AL A B/NT 3SR, U 2 5
MEZ R THFE R R TR 2 S E 0 3 SR T
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Fig.7 Relative change of pyrite and calcite volume fraction versus time for the coal seams NO.2 and NO.3
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Fig.8 Contour of pH for different simulation times
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R O, BUK P BIR YL S 248 R
AR (& 7(e) FF IR A, I XRD R IZUTTE Y 95 1)
N, K IMETEY IR (Fe,05) i F ik 77.7%.
R pH AT 45 3, /KRR 1 5 5tk TR B
FALIE I LA A E A, AR BRI R LK T AR IR A
pE—pH & 2 Al 1, 5568 19 A AL EREE 4 Fe(OH)4(s)
FIMRAF R85, DUTEDI ML i A v 32 2 40 M AR Fe, 050
RIGE 7(a). (d), 2 )2 A 3 502 R TR
W B 55 5 A ST R P AT — B A R, B
fiff S R T VTR P AR T AR RS o AR T
. W3 SRR 2R, H Fe(OH), TIEiL/N T 2
SR, WE T(e) B . LAk, BIILE SRR B2 Ak
S GRS UIE, H 2 SHIZUIEE £, 8 LT,
K 2 S B2 T s g g A R B £, Hi% )2 pH
IR, I Fe(OH), BADTIE MIZE 0 TvE Y &
F 3 SR, ST Y e S BRI R TR IR
IR B R A

HRYEASE AL PR G5 20 W) iR IR B B0 (36 1),
T fdAAU AR 2 SIEZE R 3 52, HAh 4 2 i
AR SR E, T (Ca™) 5 A2 [ 1
%, SR X b2 BT A DlEE (K9), Hirp
& IR TTIRATVRSRUTTETE 50 d ZEATEAES 5. K 10 A
NIIEH ] Ca™ ik BEAE T A0, BT Ry
AT R IR, 8L 3 B2 Ca® R B, i H:
M X S 7 AT ITCUE, B Ca®' i B ik B S IR A e 3
423 KAbFGEALE S

ASTR] ) SOF Joi ek v JBE 78 ) il - 43R dn &l 11 e
R, AT HA i R SOOI M 2 542 7= A I Bl ) 2 A
T A R, LG B B34, 0T A SO 4 Ak 11y
HA RS 75 LR adrd, K 12(a) B4 L
T2 S IEEN 3 5 I Ao A R R N () AR A
KFRo MXFT, 2 SHIZE A Oy(aq) It ik i
BT 3SR, B sk A AR B T R, R R R I

(a)=30d

(b)=80d

HIRERNE 2, BRI E T B Rk e A
SO, AR SRR AR P e R, RS

S FAR)Z P IE . Hd 2 582 0y(aq) BRI E
FETT 60 d ¥Ab T b, Bl 5 28 T B 1 3 52
O,(aq) A B i W BE /N, AEBE B 1) B L3454k I
T a2 FIEZE M 3 SR Oy(aq) BTt Wk BE 42
84 mg/L, LA I, IEEEF1 DOC Ak 7T 21
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