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Abstract: The gob of coal mine is an important area for achieving the goal of “dual carbon in China. The geological body
formed by coal mining, which can enrich coalbed methane and provide substrate and space for later microbial activities
and mineralization filling is defined as the mining influence body. The proposed technologies include the residual coal ex-
traction through mining influence body microorganisms and the co-mineralization and filling of CO,-fly ash. The broad
prospects of the technology in the secondary development of mining, from the perspectives of necessity and feasibility, are
elaborated upon regarding the safe storage of CO, and efficient disposal of fly ash solid waste in coal-fired power plants.
The overall concept is to utilize mining influence body as a anaerobic fermentation “factory” and microorganisms as
“workers” to process the existing raw materials of the “factories”including residual coal, thin coal seams, dispersed organ-
ic matter, and injected CO,. The ultimate goal is to produce methane, thereby achieving the resource utilization of microbi-
al mining for residual coal and CO,. The combination of CO, and alkaline fly ash simultaneously achieves the mineraliza-
tion storage of CO, and the filling of mining influence body. The key scientific issues are involved in this technology en-
compass the classification of mining influence body and the characteristics of organic matter, elucidating the mechanism
of anaerobic fermentation under in-situ conditions specific to mining influence body, investigating the cooperative miner-
alization mechanism of microbial-CO,-fly ash, as well as undertaking a demonstration project for constructing the key
technology of microbial residual coal mining and filling. The laboratory physical simulation of the in-situ conditions of the
mining influence body demonstrates that the residual coal and organic-rich mud shale have the capability to generate bio-
methane, with methane production further enhanced by a small quantity of fly ash. The dynamic experiment of simulated
groundwater recharge demonstrates that the nutrient recharge significantly impacts the anaerobic fermentation system.
Specifically, the system with a cycle period of 14 days was consistent with the cycle of methanogens, which can ensure the
continuous and efficient operation of the anaerobic fermentation system. After a curing period of 28 days, the test speci-
men containing high calcium fly ash, CO,, and mine water exhibited a compressive strength of 12.31 MPa. Additionally,
each ton of fly ash had the potential to store approximately 21.99 m’ of CO, through mineralization, highlighting the dual
benefits of CO, emission reduction and goaf solidification achieved by utilizing fly ash. The engineering test target area
was optimized based on the purpose of microbial coal residue mining and fly ash filling. Also, the groundwater retention
area was identified as the optimal location for CO, mineralization and fly ash filling. The natural trap formed by mining
activities and the trap formed by artificial filling were one of the more favorable engineering test targets. The proposed
technologies of microbial residual coal mining, CO, and fly ash co-filling are aimed at providing a novel technical ap-
proach for carbon emission reduction and goaf ecological environment management in China.

Key words: mining-influenced bodies; microbial mining residual coal; CO, storage; solidified filling of fly ash; dy-
namic and static characteristics; organic matter characteristics
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Fig.4 Lithologic column diagram and distribution of the impacted geological body of coal mine mining of SN—01 well in a block
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Fig.5 Methanogenic potential of different TOC substrates in anaerobic fermentation system and four stages of anaerobic fermentation
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Table 1 Relative content of different elements in fly ash in the anaerobic fermentation system %
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Nb 0.024 5 Mo 0.014 3 Cl 0.0120
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Table 2 Chemical composition of fly ash in the anaerobic fermentation system
% Sio, Al 04 Fe,0; CaO TiO, Na,O K,0 7Zn0O HiAtl

Jite ) K/ % 50.16 32.09 6.03 5.53 1.85 1.17 0.45 0.12 3.60
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Table 3 Chemical composition of high calcium fly ash

% Si0, Al,O5 Fe,04 Ca0

MgO Na,O K,0 SO, HoAthy

Fi 535 % 21.09 17.80 31.57 20.64

0.51 1.17 0.45 1.29 5.48
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Table 4 Water quality analysis of mine water
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Fig.8 Thermogravimetric analysis of different fly ash cementation specimens and the ability to fix CO, per unit mass of fly ash
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