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Critical metals in coal and coal-bearing sequences: A comparison between
China and the United States

DALI Shifeng
(College of Geoscience and Survey Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

Abstract: Critical metal resources are of paramount importance to economic development and national security. The en-
tire process, i.e., from exploration, mining, separation, purification, to application of critical metals, has attracted signific-
ant global attention and has become a core issue in geopolitical competition among major powers around the world. Critic-
al metals hosted in coal and coal-bearing sequences have emerged as a cutting-edge research topic in coal geology, miner-
alogy, metallurgy, and mineral processing. China and the United States are the two most influential members in this field.
This paper firstly summarizes the current research status of both countries in the areas of mineralization theory, explora-
tion, extraction, and separation of coal-based critical metals, and further analyzes their strengths and weaknesses. In the
past decade, the United States has made a significant progress in the discovery and separation of critical metals in coal and
coal-bearing sequences, due to the unified deployment and substantial funding from the U.S. Department of Energy.

China, on the other hand, has made significant advancements in the establishment of mineralization theories, evaluation in-
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dices and standards of critical metals in coal, thanks to the complex coal-forming geological conditions that led to the co-

existence of critical metals in the same basin, as well as diverse combinations and spatial occurrences of these metals. The

intensely geopolitical competition has heightened the struggle for control over critical mineral resources. Therefore, a real-

istic and accurate understanding of the status of critical metals hosted in coal and coal-bearing sequences in China and the

United States, as well as their research progress, strengths, and weaknesses, is crucial for further leveraging China's ad-

vantages in critical mineral resources in the context of great power geopolitical competition, addressing the severe chal-

lenge of ensuring a stable supply of China’s scarce critical metals, and reducing the dependence on external supply chains.
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Fig.1 The 2023 list of critical materials released by U.S. Department of Energy
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Fig.2 Timeline of recovery of critical minerals and materials from coal by U.S. Department of Energy
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Fig.3 Program structure of critical minerals and materials from coal-based sources of U.S. Department of Energy
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Fig.4 Technology structure of recovery of critical minerals from coal-based sources by U.S. Department of Energy
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