
 

突水系数 60 年：面临困境及发展方向
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摘　要：自 1964 年突水系数诞生以来，60 年里尽管历经多次改良变化，但其主体一直是我国预测

和评价底板突水危险性的主要方法，在保障带压开采生产安全及推动带压开采理论发展方面发挥

了重要作用。回顾了突水系数法的传承与发展历程，总结突水系数法发展历史，认为突水系数法

演变主要围绕“有效隔水层厚度”这一概念展开，临界突水系数无法确定限制了其他版本突水系数

法的应用。从充水水源、强度、通道、时间、水质 5 个维度阐释了浅部与深部水害特征及异同，

指出了深部开采条件下突水系数法局限所在；总结改良版本，指明深部条件下突水系数法改良方

向：围绕针对性不强、隔水层厚度影响、考虑因素单一等进行改良。剖析学科概念，回归突水危

险性评价命题本身，危险性评价应回答突水的可能性及突水的危害程度两部分内容；梳理突水危

险性影响因素，指出突水系数法缺陷：对地质构造、含水层富水性等重要影响因素考虑不全面。

展望未来，探讨了突水系数法发展方向，包括与其他理论及方法形成组合模型、选用大数据评价

方法。随着信息化技术的进步及煤矿智能化建设进程的稳步推进，深度学习、机器学习以及配套

方法等将成为主流评价方法，特别是物理机制约束下的大数据评价方法是未来攻关热点。

关键词：带压开采；深部开采；突水危险性评价；突水系数法

中图分类号：TD745　　文献标志码：A　　文章编号：0253−9993(2025)01−0600−10

60 years of investigation on water inrush coefficient: Challenges faced and
development directions

YIN Shangxian1, 2, YAO Hui1, 2, LIANG Manyu1, 2, WU Wei2, LIAN Huiqing2, HOU Enke1,
ZHAO Peng3, ZHANG Yian3, WANG Xiong3

(1. School of Geology and Environment, Xi’an University of Science and Technology, Xi’an　710054, China; 2. Hebei State Key Laboratory of Mine Disaster

Prevention, North China Institute of Science and Technology, Beijing　101601, China; 3. Ordos Guoyuan Mining Development Co., Ltd.,

Ordos　017000, China)

Abstract: Since  the  birth  of  the  water  inrush  coefficient  in  1964,  in  spite  of  it  has  undergone  many improvements  and
changes in the past 60 years, its main body has always been the main method for predicting and evaluating the danger of
bottom water inrush in my country, and has played an important role in ensuring the safety of pressure mining production
and promoting the development of pressure mining theory.  The inheritance and development of the water inrush coeffi-
cient method was reviewed, and the development history of the water inrush coefficient method was summarized. It was
considered  that  the  evolution  of  the  water  inrush  coefficient  method  mainly  revolved  around  the  concept  of  “ effective
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aquiclude thickness”. The inability to determine the critical water inrush coefficient limited the application of other ver-
sions of the water inrush coefficient method. The characteristics and differences of shallow and deep water hazards are ex-
plained from the five dimensions of water source, intensity, channel, time and water quality, and the limitations of the wa-
ter inrush coefficient method under deep mining conditions are pointed out; the improved version is summarized, and the
improvement  direction  of  the  water  inrush  coefficient  method  under  deep  conditions  is  pointed  out:  improvements  are
made around the lack of specificity, the influence of the thickness of the impermeable layer, and the single consideration
factors. Analyzing the concepts of the subject and returning to the proposition of water inrush hazard assessment itself, the
hazard assessment should answer two parts: the possibility of water inrush and the degree of harm caused by water inrush;
sorting out the factors affecting the hazard of water inrush, and analyzing the defects of the water inrush coefficient meth-
od:  it  does  not  fully  consider  important  influencing  factors  such  as  geological  structure  and  water-richness  of  aquifers.
Looking into the future, the development direction of the water inrush coefficient method is discussed, including forming a
combined model with other theories and methods and selecting big data evaluation methods. With the advancement of in-
formation technology and the steady progress of the intelligent construction of coal mines, deep learning, machine learn-
ing and supporting methods will  become the mainstream evaluation methods.  In particular,  big data evaluation methods
under the constraints of physical mechanisms are the future research hotspots.
Key words: mining under water pressure；deep mining；water inrush risk assessment；water inrush coefficient method
  

0　引　　言

底板奥陶系灰岩 (简称奥灰)水是华北型石炭二

叠纪煤田开采主要威胁。奥灰含水层具有较高的含

水能力，且岩溶裂隙发育，一旦突水，将造成大量人员

伤亡及财产损失，因此，底板奥灰水防治一直是煤矿

安全生产工作的重点。围绕此问题，科研工作者展开

系统研究，形成带压开采理论及技术体系[1]，解放了大

量受奥灰水威胁的煤炭资源。突水系数法作为带压

开采理论体系的重要组成部分，由于简洁高效特性而

被广泛应用，在评价和预测煤层底板突水方面起到了

积极作用[2]。

随着资源需求增加及开采强度增大，浅部资源日

渐枯竭，转向深部开采[3]。深部开采条件下，矿井水文

地质条件更为复杂，突水影响因素增多。与浅部水害

相比，深部突水模式及特征发生巨大转变[4]。传统带

压开采理论和技术不能满足安全开采需求，突水系数

法显示出一定局限性。突水系数法的改良逐步提上

议事日程。 

1　突水系数法历史沿革

突水系数为单位隔水层厚度所能承受的水压力，

是衡量底板突水危险性的重要指标，其发展历程如

图 1所示[2,5-6]。
 
 

20世纪60年代 20世纪70年代
p

T=
M−CP

20世纪80年代中期
p

T=
M−(CP+h1)

p
T=

M−CP+h2

20世纪80年代末 2009年
p

T=
M

p
T=
M

(a)无导升带、无相对隔水层情形 (b)有导升带情形 (c) 有相对隔水层情形

C
P

M p

奥灰含水层

底板隔水层

底板采动破坏带

奥灰水水位

C
P

M p

h
1

奥灰含水层

底板隔水层

底板采动破坏带

奥灰水水位

承压水导升带

C
P

M p

h
2 奥灰顶部相对隔水层

奥灰含水层

底板隔水层

底板采动破坏带

奥灰水水位

图 1    突水系数法发展历程

Fig.1    Development history of water inrush coefficient method
 

突水系数法脱胎于“底板相对隔水层”概念。

1944年，匈牙利科学家韦格·弗伦斯指出底板突水现

象与底板所承受水压大小及隔水层厚度有关，认为相

对隔水层的厚度制约着突水事件的发生。1964年，原

煤炭工业部组织相关专家于焦作进行水文地质会战，

根据焦作矿区实际突水资料，结合防治水生产与实践
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经验，综合分析，在“底板相对隔水层”概念的基础上

提出突水系数计算公式：

T =
p
M

(1)

式中：T 为突水系数，MPa/m；p 为底板隔水层承受水

压，MPa；M 为底板隔水层厚度，m。

初版公式考虑了奥灰水水压与隔水层厚度 2个

重要因素，能够定量表征隔水层厚度与奥灰水压力矛

与盾之间的关系，并根据矿井突水资料给出了临界突

水系数 (Ts)值，推进了底板突水危险性评价定量化工

作，具有参考价值及较大的影响力。20世纪 70年代，

煤炭科学研究总院西安分院相关专家与其他单位技

术人员根据实际及模拟研究资料[2]，对初版公式进行

了改进：

T =
p

M−Cp
(2)

式中：Cp 为底板破坏深度，m。

式 (2)考虑了采矿活动对煤层底板隔水层的破坏

作用，将煤层底板破坏深度纳入考量，符合客观实际，

被 1984年发布的《矿井水文地质规程》 (试行 )[7]和
1986年发布的《煤矿防治水工作条例》(试行)[8]所采用。

但 2个文件给出的突水系数临界值参考却存在差异：

 《矿井水文地质规程》(试行)认为“底板受构造破坏块

段突水系数一般不大于 0.6，正常块段不大于 1.5”，

 《煤矿防治水工作条例》(试行)认为“临界突水系数值

应根据本区资料确定，一般情况下，在具有构造破

坏的地区按 0.6计算，隔水层完整无断裂构造破坏

地区按 1.0计算”(2个文件中突水系数单位都采用

kgf/(cm2·m)，1 kgf/(cm2·m)≈0.1 MPa/m)。
20世纪 80年代，研究人员考虑底板高承压水对

隔水层的劈裂作用而产生的承压水导升现象，将式

(2)改进为

T =
p

M−
(
Cp+h1

) (3)

式中：h1 为底板承压水导升高度，m。

式 (3)考虑了采矿活动对隔水层的人为破坏，同

时也考虑了奥灰水压对隔水层的自然破坏。研究人

员给出了不同水压条件下的承压水导升高度研究方

法与经验值[9-12]，但对于该式对应的临界突水系数尚

未有明确标准。

华北型奥陶系中统顶界面以下岩溶风化壳经过

岩溶发育、沉积、充填、压实、胶结长时间作用后，形

成具有一定强度和低渗透特性的相对隔水层 [13-15]。

20世纪 80年代末，考虑到奥灰顶界面相对隔水层的

存在，将式 (3)改进为

T =
p

M−Cp+h2
(4)

式中：h2 为奥灰顶部相对隔水层厚度，m。

式 (4)考虑了奥灰顶部相对隔水层存在的问题，

符合华北型煤田实际情况。

2009年，由国家煤矿安全监察局颁布的《煤矿防

治水规定》[16]规定采用式 (1)计算突水系数评价煤层

底板突水危险性，并规定正常地段临界突水系数取

0.10 MPa/m，具有构造破坏的地段临界突水系数取

0.06 MPa/m，沿用至今。

纵观突水系数法发展历程，改进主要围绕“有效

隔水层厚度”这一概念展开，式 (2)、式 (3)、式 (4)分
别考虑了采矿活动对隔水层的破坏作用，承压水自然

导升对隔水层的破坏作用以及奥灰顶界面风化带对

隔水层的增厚作用，都有一定的科学道理与参考价值。

但临界突水系数未能确定，缺乏应用基础。 

2　深部开采条件下突水系数法改进
 

2.1　深部及深部水害特征

深部是一个力学概念，由地应力水平、采动应力

水平、围岩属性共同决定[1,17]。何满潮院士认为：深部

是岩体出现冲击地压、瓦斯突出、底板突水等非线性

力学现象的深度[18]。谢和平院士认为：由浅部向较深

部、超深部转变，就是地应力状态由构造应力主导向

两向等压应力状态，继而向三向等压应力状态转变的

过程[19]。

华北型煤田底板浅部突水最突出特点是隔水层

厚度一般小于 35 m，大部分在 30 m以下，承受水压

在 3.0～4.0 MPa以下，此时，突水系数法评价带压开

采危险性的适用性良好[1,20-21]。

与浅部水害相比，深部水害在充水水源、强度、通

道、时间、水质 5个方面都呈现出不同特征[22]：① 充
水水源。奥灰水是深部水害的总源头，夹存于底板隔

水层中的薄层灰岩是深部水害的中转站，采掘空间是

深部水害的目的地。在高水压作用下，奥灰水源源不

断补充薄层灰岩，中转递进导升至采煤工作面，形成

突水事故。② 充水通道。深部水害多发生于小断层

或断层交叉、褶曲带等构造集中处附近及地应力集中

带。③ 充水强度。奥灰水对充水通道不断压裂、扩

容、冲刷合并，水量及水能不断积聚，突水以台阶式累

进态势由小到大增长。④ 充水时间。采掘活动导致

应力释放后一段时间，伴随底板破坏出现渗水、涌水

至突水的现象。⑤ 充水水质。突水过程中，水中阳离

子以 Na+或 Na+、Ca2+为主向 Ca2+或 Ca2+、Na+转变，
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SO2−
4 SO2−

4 HCO−3、Cl−或 Cl−、 逐渐转变为 ，矿化度逐渐

降低。 

2.2　深部开采突水系数法局限性

深部充水条件与浅部相比发生巨大转变。首先

是各矿区隔水层厚度普遍大于 50 m，有的矿区甚至达

到了 300 m[15]；其次是奥灰水压的变化，千米以深矿井，

奥灰水压达到了 7 MPa以上，为底板超高承压水；最

后是突水模式的转变，深部岩体有效应力升高并驱动

裂隙扩展[23]，承压水沿裂隙渗透、扩容、压裂，中转导

升，形成大面积散流突水。实际统计数据规律 (图 2)
显示，带压开采底板隔水层厚度与所承受水压之间的

平衡关系并非线性关系。突水系数是隔水层厚度小

于 50 m条件下简化的线性关系，其公式是薄板理论

公式的近似，建立在薄板破断机理之上。深部突水以

散点大面积涌水为特征，发生发展受厚板压裂导升机

制控制，突水系数法显然不适用于深部厚隔水层情形。
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图 2    带压开采水压与隔水层厚度数据统计分析

Fig.2    Statistical analysis of water pressure and aquiclude thickness data when mining under water pressure
 

以下这些统计数据更能说明突水系数法的准确

性问题 (表 1)。
  

表 1    典型矿区突水点突水系数统计表 (据文献[24]修改)
Table 1    Typical mining area water breakthrough point

water breakthrough system statistics table(revised according
to literatures[24])

突水系数T/(MPa·m−1) 肥城矿区 焦作矿区 淄博矿区 合计

T < 0.06 26 59 42 127

0.06≤T < 0.10 0 21 41 62

0.10≤T 0 10 18 28
 

在典型矿区突水点突水系数统计表中，突水系数

T < 0.06 MPa/m时，总计发生突水 127次；突水系数

0.06 MPa/m≤T < 0.10 MPa时，总计发生突水 62次；

突水系数 T≥0.10 MPa/m时，总计发生突水 28次。

可以看出，在突水系数判别安全区间内，发生突水次

数要大于判别危险区间内的发生次数。 

2.3　突水系数法改进版本

除被规程和条例引用的改良突水系数法外，学者

们针对突水系数法实际应用的一些弊端，对突水系数

法进行了不同程度的改良 (表 2)。
这些改良尽管没有大规模应用于生产实际，但对

于推动突水系数法公式发展起到了一定的积极意义。

改良主要围绕 3方面展开：

1)围绕突水系数法针对性不足的问题进行改良，

如文献[25]及文献[26]。高莲凤等[25]以东山煤矿为研

究对象，重新建立奥灰水压力与隔水层厚度关系式，

并给出建立在特定矿井突水数据之上的突水临界判

别值；樊亚红等[26]针对先锋煤矿隔水层岩体强度低、

水理性差、易膨胀和易软化的特点，利用摩尔库仑准

则对突水系数法进行了改进。这类改良尽管提升了

突水系数法在特定条件下评价的准确率，但削弱了突

水系数法的普适性，不适宜全面推广。

2)围绕隔水层厚度对突水系数法表现影响进行

改良，如文献[27]及文献[22]。LI等[27]从隔水层越薄

突水危险性越大的实际现象出发，将隔水层厚度分为

两级并给出对应的临界突水系数判别式；尹尚先等[22]

为淡化突水系数法在极薄、厚、巨厚隔水层中的应用，

综合隔水层厚度、底板破坏深度、奥灰导升带高度、

突水系数等因素将底板隔水层划分为极薄、薄、中、

厚、巨厚 5类隔水层，并给出相应危险性判定标准及

开采条件。随着开采深度增加，隔水层厚度增大，对

隔水层厚度分级处理，并依此对突水系数法本身或突

水系数临界值进行改良，能够大幅提高突水系数法在

深部开采中的适用性。

3)围绕突水系数法考虑因素单一的问题进行改

良，如文献[5]、[28]、[29]、[30]、[31]及[32]。比较典型

的有乔伟等[31]针对深部超高承压弱富水的环境特性，
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将能够表征含水层富水性的指标——单位涌水量引

入突水系数法中，建立 T—q(钻孔单位涌水量，L/(m·s))
法作为突水系数法的补充来评价底板突水危险性。

深部开采环境下，地质条件更为复杂，底板突水促因

众多，突水系数法所能考虑的影响因素极为有限，仅

凭水压和隔水层厚度之间的线性关系无法精准描绘

受控于多因素且因素之间相互作用的底板突水演变

过程。将更多因素纳入考量，能够提高突水危险性评

价结果的准确性和科学性。但考虑多因素影响的要

求，无法被突水系数法形式满足，也会破坏其简洁特

性，因此需要借助其他评价方法来实现。 

3　突水危险性分析

突水系数法是用于底板突水危险性评价的一种

方法。要论述突水系数法的优缺点，可以回到对突水

危险性评价的一些认识上来。

突水危险性评价，即综合地质信息与生产信息，

分析煤矿是否具备安全生产条件[33]。从矿井水防治

 

表 2    突水系数法改进版本统计

Table 2    Improved version of water inrush coefficient method for statistical analysis

序

号
表达式 符号含义 改进原因 应用效果

文献

来源

1 y = −3.087 2lg p+5.661 41g M y—判别函数值 临界突水系数是根据大多数矿

井突水资料确定的临界值，不

具有针对性，对某一矿井而言

并不一定适用

评价结果与突水系数评价结果基

本一致，但改进后形成的判别分

析法对已有突水资料的矿井判别

效果更好

[25]

2 T =
p0 − pwaste

M−Cp −h1

pwaste = 0.090 6h1e−14.969K

p0—含水层的静水压力，MPa；
pwaste—水头损失值，MPa；K—
底板隔水层渗透系数，m/d

先锋煤矿隔水层岩体强度较低，

水理性差，具有明显的膨胀性

和软化性，从剪切破坏的角度

对突水系数法进行修正

实地勘察验证发现改进突水系数

法适用性良好，评价得到的可能

突水区域是实际重点突水防治对

象

[26]

3 Ts =
1

6 000
M+0.02,0 < M ⩽ 30 m

Ts = 0.002 5M−0.05,30 < M ⩽ 80 m

考虑隔水层厚度对临界突水系

数的影响：隔水层越薄突水危

险性越大

适用于不同厚度隔水层分级判别 [27]

4 T = K1(aF +
bp
M

) F—构造复杂程度；a,b—权重

系数，分别为0.6和0.4；K1—富

水性指数

突水系数法考虑因素较为单一，

不能满足煤矿生产及安全需要

评价结果与突水系数评价结果相

似，但改进后分区分级预测信息

更加详细，评价结果更准确

[28]

5 T = p
n∑

i=1

Midi −
n∑

i=1

Cidi −
n∑

i=1

hidi

n—隔水层分层总数；Mi—各隔

水层分层厚度，m；Ci—第i分
层采动破坏厚度，m；di—第i分
层厚度折算系数；hi—第i分层

承压水导升高度，m

不同岩性隔水层分层阻水能力

存在差异

预测上孔煤业15号煤层无突水危

险，并提出针对性防治措施

[29]

6 ξ =
p

pmax
ξ—突水指数；pmax—隔水层突

水极限水压，MPa
突水系数法仅考虑了隔水层厚

度，未考虑隔水层岩层岩性结

构特征和开采方式、工作面布

置等因素，存在局限和不足

通过实例分析发现突水系数法适

用于浅埋、窄面情形，突水指数

适用于工作面斜长较大的情形，

可以弥补突水系数法不足

[30]

7 T–q法 在反映含水层性质方面，仅考

虑了含水层水压，并未考虑涌

水量这一关键因素，且突水系

数法实际预测准确率差

针对富水性较差的含水层突水评

价，可以作为突水系数法的补充

[31]

8 T =
p

n∑
i=1

Miζi −0.65Cp

T =
p

n∑
i=1

Miζi − ζaCp

ζi—隔水层各分层的比值系数；

ζa—底板破坏带发育岩层的质量

比值系数

各类岩石力学强度及各隔水层

分层阻水性能存在差异

不仅对突水危险区域有更直观精

确的显示，而且能够给出临界突

水系数最大值与最小值

[32]

9 T =
p

n∑
i=1

Miξi −Cp −h1 +h2

ξi—底板隔水层第i层岩层等效

隔水系数

考虑各岩性分层隔水层阻水能

力差异及奥灰顶界面存在相对

隔水层的情况

修正公式评价结果安全度相对高

于《煤矿防治水规程》公式评价

结果

[5]

10 依据M、Cp、h1、T等因素将底板

隔水层划分为极薄、薄、中、厚、

巨厚5类隔水层，并给出5类隔水

层所对应的带压开采条件

突水系数在极薄、厚、巨厚隔

水层情形下表现不佳

成功应用于邯邢矿区梧桐庄井田

突水灾害治理工程

[22]

　　注：为使文章上下文参数含义统一，对各论文表达式中参数做出统一替换。
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学科内容及实际生产要求来看，突水危险性评价需要

回答矿井在一定时期内可能发生突水的时间、空间范

围、强度、规模、频次等问题[34-36]。这里面就包含了

发生突水的可能性评价与突水危害程度评估两部分

内容[35-36]。 

3.1　突水危险性影响因素分析

底板突水是受多种因素影响并具有非线性动力

特征的复合动态现象[37]。根据突水过程分析及前人

工作成果总结，突水危险性影响因素可概括为以下 4
个方面[24,38](图 3)：① 采掘活动是底板突水的诱导因

素；② 有效隔水层厚度是底板突水的抑制因素；③ 水
压是底板突水的动力因素；④ 含水层富水性是底板突

水量的决定因素。其中，有效隔水层厚度通过“隔水

层厚度及性能”及“构造破坏带”来考量。

有别于其他可归结于内因的大类，采掘活动影响

因素为人类社会所影响的外因，隶属于“易损性评价”

研究内容[36]，牵涉指标复杂且多属于定性评价，难以

定量化；相关行为多通过条例、细则等进行规范，开采

工艺、工作面斜长、煤层倾角等采掘活动要素也多通

过底板破坏带内容间接作用，因此在底板突水危险性

评价工作中较少考虑。

有效隔水层厚度是隔水层阻水能力的综合反映。

不仅包含对不同岩性岩层的等效厚度置换，也包含对

 “采动破坏”“奥灰顶部相对隔水层”“地质构造”等

因素对隔水层厚度的考量。有效隔水层厚度越大，对

突水的抑制作用就越明显。
 
 

诱导因素

底板

突水

影响

因素

指标

体系

含水层富水性

水压

有效隔水层厚度

隔水层厚度

隔水层性能

构造破坏带

正常隔水层厚度

奥灰顶部相对隔水层厚度

隔水岩段岩性比例

隔水岩段关键岩层位置

隔水岩段阻水能力

承压水导升带

断层

褶皱

陷落柱

底板破坏带

采掘活动

开采工艺与方法

工作面斜长

煤层埋深

煤层倾角

煤层采高

突水量的

决定因素

抑制因素

动力因素

地质构造

图 3    底板突水影响因素指标体系

Fig.3    Index system of factors affecting water inrush from floor
 

水压是充水含水层作用于煤层底板的压强，提供

突水的基本动力。如果水压的“矛”能够突破有效隔

水层的“盾”，则形成突水。在考虑承压水原始导升高

度的情况下，其值采用作用于有效隔水层的残余水头

应力来表示，一般变化不大[37]。

含水层富水性是表征岩层出水能力的指标，与含

水层补给量、储存量及导水性有关，是突水量的决定

因素。根据乔伟教授研究成果[31]，随着开采深度增加，

地应力增加，岩溶含水层水压增大，富水性变弱，含水

层水压与富水性之间并无必然联系。笔者认为：富水

性是表征水量的指标，不提供突水动能，只决定突水

量的大小和突水持续时间的长短。从这个角度来讲，

水压与有效隔水层厚度是突水可能性的评价指标，含

水层富水性是突水危害程度的评价指标。
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3.2　突水系数法局限性

通过突水危险性影响因素分析，可以发现突水系

数法主要存在以下不足：

1)对“地质构造”影响因素考量较少。地质构造

包含断层、陷落柱、褶皱等，深部开采条件下煤层底板

突水事故基本都与地质构造有关[39-41]，因此理应重视

地质构造因素作用，但现行突水系数法公式仅在临界

突水系数确定 (底板受构造破坏地段按 0.06 MPa/m
计算，正常完整地段按 0.10 MPa/m计算)中对地质构

造要素有所涉及，考量明显不够。

2)缺乏含水层富水性指标考虑。含水层富水性、

承压水水压力与隔水层阻水能力，是带压开采能否正

常开展的决定因素[1]。含水层富水性虽不能决定突水

可能性，但对衡量突水危害程度有决定性作用，理应

属于突水危险性评价内容，但突水系数法却缺少此指

标考虑。 

4　突水系数法发展方向探讨

突水系数法长期被《煤矿防治水工作条例》(试行)
 《矿井水文地质规程》《煤矿防治水规定》《煤矿防治水

细则》[42]等法规推荐使用，在 60年煤矿带压开采工作

中起到了积极作用，其形式简单，深入人心，但从深部

开采的生产实际条件及突水危险性评价的理论研究

方面分析，突水系数法都存在一定局限性，针对突水

系数法的改良工作势在必行。 

4.1　与其他理论及方法结合

深部开采的复杂环境与突水系数法在不同隔水

层厚度条件下的表现差异决定了对突水系数法的改

良要根据隔水层厚度大小分开看待。

针对浅部极薄隔水层 (隔水层厚度≤30 m)，考虑

到突水系数法的表现不佳，需要收集全国矿井突水数

据，重新确定合适临界突水系数。针对深部厚及巨厚

隔水层 (隔水层厚度> 80 m)，考虑到突水系数法无法

反映深部复杂突水机理及突水要素，需要与其他理论

及方法形成组合模型解决现有困境。

一种思路是重新考虑围岩应力与水压力的平衡

关系，建立深部突水行为力学判据。与浅部相比，深

部地应力环境与岩体力学性质发生巨大转变。深部

突水，是以能量突然释放为核心驱动力，建立在传统

浅部能量耗散基础上的应力应变破坏准则已完全不

适用[19]。因此，必须系统研究深部开采条件下岩体破

裂能量耗散与释放规律，定量表征突水过程中岩体应

力场、能量场、温度场等的大小、集聚及变化特征，建

立深部突水判识准则，整体形成“浅部突水系数+深部

力学理论”的判别模式，实现对不同隔水层厚度下突

水危险性的科学评价。但目前对深部岩石性质及行

为缺乏了解，基本概念及基本理论并不成熟，因此，需

要深部及深部开采条件下基本力学理论的突破，这种

改良模式方才具备理论可行性。

另一种有效思路是针对深部厚及巨厚隔水层情

形，选用其他评价方法，如脆弱性指数法。脆弱性指

数法是由武强院士于 2007年提出[43]并被写入《煤矿

防治水细则》的底板突水危险性评价方法，利用多源

信息集成理论及地理信息系统，对多种突水要素进行

耦合做出评价，通过“突水系数法+脆弱性指数法”的

组合模型，一方面可以保证含水层富水性、地质构造

等对突水有显著影响的指标被考虑，另一方面，也形

成了评价结果的双重保护，进一步保证评价结果的客

观与准确。这种模式具备实践基础，已被应用并取得

突出表现[44]，但缺点是流程较为繁琐。 

4.2　大数据评价方法

有赖于矿井数据规模的爆炸增长与信息处理技

术的稳步提升，以机器学习为代表的大数据方法成为

目前刻画突水非动力现象的主流方法。同时为突水

危险性评价方法改良提供了新的可能途径，即完全摒

弃传统突水系数法，改用大数据评价方法进行突水危

险性评价。

大数据时代背景下，以机器学习为代表的人工智

能方法，是实现产业变革和科技进步的核心驱动

力[45-46]。机器学习通过概率统计模型，挖掘生产数据

和地质数据得到高价值信息，从而提升危险性评价的

准确率[47]。一种可靠的观点是：突水系数法来自于焦

作、峰峰等代表性矿区的隔水层厚度与奥灰水水压的

数据统计与分析，本就属于大数据评价方法范畴，能

够考虑更多要素、处理更多类型数据的机器学习算法

可以说是突水系数法的上位替代[48]。

针对突水系数法在不同隔水层厚度条件下表现

存在差异的问题，以全国水害事故为样本，通过机器

学习方法学习不同隔水层厚度条件下突水事件发生

概率，建立针对不同厚度隔水层的分级评价标准；针

对突水系数法考虑因素较少、特定指标未涉及的问题，

通过机器学习方法进行数据挖掘，整合指标数据特征，

使评价指标更完备、评价信息更准确，提升突水危险

性评价结果准确率[49-50]。

目前，机器学习方法已经在突水危险性评价领域

有较多应用，取得了良好成效，但依然存在一些突出

问题需要解决[51]。

一是煤矿数据质量与数量的问题。数据质量和

数量会对危险性评价结果造成较大影响。尽管近几

年煤矿在智能化的道路上稳步推进，但部分评价关键
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数据 (如钻孔柱状图等地质信息、涌水量台账等水文

信息)仅实现了电子化的转变，依然需要人工提取信

息并进行数据格式转化，无法直接使用；数据量距普

遍意义上的大数据量级 (PB级)也有很大差距[52]，数

据量级问题的解决不仅需要依靠机器学习算法 (如迁

移学习算法对小样本问题的处理[53]、插值算法对数据

量的扩充)的更新与进化，而且也对煤矿的智能化建

设提出了更高的要求。煤矿数据也存在数据不完整、

不准确、更新不及时等质量缺陷，需要依赖数据清洗

相关算法来推动解决[52]。

二是机器学习方法本身所存在的可解释性差的

问题。突水系数法在形式简单的前提下能够反映出

地下水渗流最基本规律—Darcy定律的核心思想，具

有一定的理论基础与科学意义[48]，但机器学习属于黑

箱模型，缺乏实际系统结构及其参数的物理意义解释，

能够给出危险性评价的结果，却给不出评价结果的合

理解释。这也造成研究者对机器学习方法参与突水

危险性评价工作的信心不足。因此，利用底板突水过

程中蕴含的规律和模式、物理关系等知识约束机器学

习评价过程，构建物理导引的机器学习模型，获得物

理一致的危险性评价结果，是机器学习参与突水危险

性评价工作的前沿挑战[47]。 

5　结　　论

1)现行突水系数法是带压开采现场实践与科研

经验的高度总结，经历了多次更新进化，先后考虑了

采矿活动对隔水层的破坏作用、承压水自然导升对隔

水层的破坏作用以及奥灰顶界面风化带对隔水层的

增厚作用，其改良主要围绕“有效隔水层厚度”展开，

具有一定的科学道理和参考价值。

2)突水危险性评价，包含对发生突水的可能性与

突水危害程度的评估，需要回答矿井在一定时期内发

生突水的时间、空间范围、强度、规模、频次等，显然，

突水系数法只是突水可能性的概率评估，而且对地质

构造、含水层富水性等重要影响因素考虑不全面。

3)与浅部底板突水相比，深部底板突水具有突水

水源中转递进、通道集中于薄弱带、充水强度累进增

长、滞后出水、离子交换吸附的特点，突水系数法已不

适用于深部环境，提出其改进方向：围绕针对性不强

进行改良，围绕隔水层厚度影响进行改良，围绕考虑

因素单一进行改良。

4)探讨了突水系数法未来发展方向，浅部薄隔水

层对临界突水系数进行修正，深部厚及巨厚隔水层压

裂导升理论及方法评价。突水的时间、空间范围、强

度、规模、频次等突水危险性评估，除了传统经典数学

力学方法外，深度学习、机器学习以及迁移算法等将

成为主流，特别是在物理机制约束下的大数据方法是

未来攻关的重要热点。
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