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Abstract: Low-carbon, zero-emission, and efficiency enhancement are the main themes of clean coal utilization today.
The slagging and pollution caused by mineral matter in coal are key bottlenecks in clean coal technologies. To uncover the

scientific challenges behind these issues, this study redefines hazardous mineral matter and extensively reviews relevant
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domestic and international literature, including journals, books, and standards. This paper summarizes the research status
of mineral matter and trace elements in coal, categorizing hazardous mineral matter and elements based on their occur-
rence states. The slagging characteristics of lithophile elements and their minerals, as well as the pollution properties of
chalcophile and siderophile elements and their associated minerals, are introduced. A classification of industrial and envir-
onmental hazardous elements and their minerals is proposed, with their harmfulness depending on the occurrence mode of
the elements and their minerals. The occurrence and enrichment differentiation characteristics of mineral matter in coal are
analyzed, generalizing the genesis types of hazardous mineral matter, and exploring the various geological and technolo-
gical impact factors on the thermal transformation of coal mineral matter, including coal rank, mineral bonding modes, the
geochemical affinity of elements, mineral composition, reactive temperature, reactive atmosphere, reactive pressure, and
the presence of other components in ash etc. factors. The migrative and transformative mechanism of harmful mineral mat-
ter in coal during gasification, liquefaction, pyrolysis, coking and combustion were reviewed, and different volatilization
degrees of trace elements during gasification, liquefaction, pyrolysis, and combustion were revealed. Finally, scientific,
technique and engineering problems such as amorphous minerals, precise quantification, high-temperature rapid analysis,
interactions between alkaline elements and silica elements, slag prediction, geological and technological coupling, and
clean degree are put forward. Looking forward to future growth, the basic research of non-crystalline mineraloid in raw
coals and molten amorphous substances during thermal technology. The application of tracer isotope techniques in thermal
processes should be paid attention to. It is suggested that hazardous mineral matter removal and rare element extraction

would be strived to develop for advancing clean coal technologies.
Key words: coal; hazardous mineral matter; trace elements; classification; occurrence modes; slagging; environment;
conversion and utilization; migration and transformation; influencing factors
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Fig.1 Classification of the hazardous elements and their minerals in coal and coal ash
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Table 1 The value of sedimentary environment by element

indicators
- A IR s
o CE=E78:
U/Th >1.25 0.75~1.25 <0.75
V/Cr >4.25 2.0~4.25 <2.0
Ni/Co >7 5.0~7.0 <5.0
SU > 1 <1
8Eu IEW-IES#H(EH) TS ()
TUREREE A Rl AR FitiAH
Sr/Ba > 1 0.50~1 <0.5
DR Z/K 13 RE R rhsg 55
V/( V+ Ni) >0.84 0.60~0.84 0.40~0.60
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Fig.5 Genetic types of hazardous mineral matter
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AR, At AR v, A & P AR [ 1503252371
FE = i i A R b, ) B 5% 4k 25 52 3] Na,O
(AR, (H b 20 ] s .37 31 Si0,+ALO; R AR 75 1t
i 0, 2 AELEE A 450 °C 3 HNE] 800 C K,
BHRYIE VRN 9.18% Ha N 379> M AL IR SE
THEE] 1000°C B, 294 82.14% 4R B B 2 M <A,
A NaCl il NaAlSi; 04 W R Af7E . —AEHL T,
IR Na BHE & e, Al fe b, K Na
CIE 2 A E N3
42 B EERETEZESUIEPNIES

WANE A K& R 2gE R S A R
TCE TR AT TG, S0 E R ITTR M
432, CLARKE 45 OUR i B v i) 19 B e AR SR B A
AT R A B IR T B A A I DL, R T
FOorm 32, 1 MR ITE, b oA fEL i
sAERL, AN R0 128 A &Mt R, i
[i] 2 4 ORE 4 rp s 4, 43 1T B ORGSR ECR R
s M2Eh 2 ¥R TCR, AT A B A =4 rh AR 2R 3
W, FEABERH R e g
T E IR R ITE 0 4 K0 R R
. W Hg, JCIe7ERE T DU AR S A7, P fbad f
T BT BIAR = IR RS R, KSR = A 1126
RFERPER EIT R, 40 CL, F, HaT R 40 W 57 H
TEAE RS R s 25445 As, Cu, Co. Ni, Pb, Se,
Zn R KM VB 4 9 ot E; TV 208 Ti,
P. Mn. U, Ba, Be, Cs. Ga, Sc. Sr. Ta, W, Th, Y.
Yb %5 15 Fhe & . FUII PR T HEd SO R <
it B R O TR A, X AT T 025 58 1 26
RREETYIOER, A SE LM, B2A Ca, Mg, Si.
Al Ti, V Fl Fe; 5 2 2 SE L TR, 284
Na. K. Cu, Nn, Ni il Cr; 3% 3 KEGHELMEITR, £
B Pb, Zn, A, F. CI #ll Hg; &% 4 82 [ AT R,
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W2 A VTR, B s AR 2 5 RO, &
AT S, C. N Al Ho RREBESECS e i e B b T
AP SR i R B 60% LA L i [ AR SR A7 AE T34k
PRI, SASRIET 20%, JADE KBRS, IF
U S A R AR IR A HE Al 2 B 1K T b T
AL TR BE . 5 He L, As B Se A% & M5
fik—28, 5 & PEHES ) Hg > Se > As. BUNT 25245247
53 3 AR T &SR R R T R R AT N,
Hg. As. Se. Cd Fll Pb H#E & HICEK, Cu, Mo, Ni fll
Zn NHFE KR IR, Ba, Co, Cr, Mn il V A AR IC
R, HEF|ELEIR2E, it Ba, Co. Mn F1 V [
e [ 72 RHE IR S AL 9T o0 55 30 25 P L ) i
Kot R —5, DANG Z5P*E5Y 1 i [ = R L
1R AR AR DR g B O T R AT, IR R S
HA TR A, RIOCEA R AE AV TRt
THRAM SR IAT T, 250 iR Isk
B BARA — R E AR, (R T - R AR Y
FRAG . X T AR B A SR T 5 b it e 28 IR D R
HEAT TWEIE, S5 R R B, 7R B DL T, Be, Mo, Ba Ity
Vs LR B AL T b [ M R K B AR TEE, Sb AT TI
R e B T 368 FEl— AR K e KT ek
SR BRAE N, FRBREPIF Fact sage #1F, 4T
WA TR Sk B FE R T R IE L
BRI, He J& T & MR oo 2, HORk 3 2k
FIUR HHALA WA B P BRI, A2 JERE v i) IR A
RAEFEWEN; F, Be J& TR R ETE, HIEBEA
IS TE R e RAPIR S 56, Rl Z S LRE . <
RFW N U THEE R TR, AR AT
7, Z HAE R AP S ok B35

5 RALAEE

BEBACAR e —E ML E | T ST R AR 2615 T
W 2t it — RSV A A AL, Fe Ak o T I T3
TR RS b (e R, 3 T B A AN Ak, A
SCRAEERA . FERRB A R, 2 iR
Ji A2 S P SR, AT R SO P A
AFERERITR TR . BRI P i 22 YR A
oL R BERTERET . Rl A RO R FERTR T,
ENTFACH TS AT B IRk FIRERRE . T
PR A RIS G0 B A SR i i, AL B 1Y K 53
R BARAIE IR o WAl & Bk ) B AR
IR RERT™ WA MBI, JF B3k sk b gk &
SR LR R TH TR BRI A A
B Yy, WS 5 WA SN o) il R B BT
(Fe,,S), Zid 1 B BIE S 242 il Al AL, 4R

FEIHER, BB A B TR SR I, R
TR TR BN IR SRR (Fe®'/Fe™) W&, JF
HAE 1200 C LA BB, Ft, B ik
R4 rP Ak B B R B MR R 3 il L RE ) i P 1
Ca, Mg, Na 1 K S0 (1) &J8 T LAgE Si. Al filiZkIE
JRRESS AR I B8 7RI R P,

fERAL B, B A FEITR TR A P e
@ﬁ [254,260-267]\ !lgj( [268,269]\ %ﬂ;n [268,269]\ %I?J [270]\ EEB [270-272]\
?J:([270—272] R %{31[270] R %%[270] R ﬁ[272,273] R {%[272,273]%773%%:

Wi (S): A2 & PN A T A BT 2 R IT
W5, K RAE VR ALt 78 rh ORI 1 B K 257616 H,S
SR, T REAL TR AR K, 5%
PR RS i, B e A S8 | A i . IR AL
P FRERAEPOEAR G ST Hh g e, AR B
TE, SRR R AEARIER T
SRR . IS S — RSN, [RIEAEA a
RN, FEIX B S W A AR B v, oA TS0 (DA
H.S IEZS). WAL il A MR AL Wi . 2 g
W) & A B A RS o A PR BR, R i &
WALTR M . W TR PO I Ak 5 ) P 2o A e
T EFRE T R I, TCHLT W6 (FeS) 32 ] A HLAL 5%
1k, H,S SR A PR B 20 i, Bk S5k A L
23 RN LS R AR . AT DL, B AR AR AL AR
AT B B AR BN B AR, 2 B 2 B RN A AR A Y
S

Bk (Ti) Fl4% (Mn) JLZE: WRIGHT Z5:2%% il ix 2
TG ER DL ALY ) R X AFTE, TR &8 2%
Zoxd i Bt AR AL SR . CLOKER W 58 26 Ak
501 BB, A T2 AR R S AL EUH (HAO) e 4
400 °C AR BEANZ) 2 MPa B R S N8 AL, 2RI U
77 A T R B B I R A e B R B R, BRRH
.

HITE (Cd): T E 2 A LT R N 5 e, H:
3R ETIRARE EVLE. B s &5 ME 758
) JLT- 245 kIR, WAL S 52 5% W e W A5k
wrh FRE A N TR B R AR, X RS
MR ER S5 W45 SIS AR R e bR
PR AL R A R T B T R A e, 322
] 5 i o R o

ILE (As) AUKICE (He): MFUKIE TR H L
JUE, AL R ) LIRS, Wl g5 =AY
R UEIAAEIE ST, Bk S & B AL &
BORA G EERAF B, R AR D, iR E:
AT REMELENMAIEE . ATRERE MR Tkt
Ab Sl PR R 235 5 A8 X LA ) SO A8 AR AL S B s
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£ JFREP R EERACRES MRS S S AILE
RIS, NSRS K418 B S sk
JLF R B Y 45 A B A HLS R AEED, #tk
EPPIL R TR R | BRI AL S i b )
1], TR K & s, RIS R B WAL
RICE (Pb): et iSRRG, # KT

WALHRI . JRRE P A EELUA MRS, & BIRTE, i
BREMIRIED, NSRS G245 A 25 T iR E:
LEABHILTEH K, RER ARG A SIS £ S,
XS PR R AR AR AL T2 A LT 45 R 728 A 5 e
FEHH KA E AP, AL, BYE LI R R A AR
BA S A HLUTEE A A VIR OG

BEICE (Cr): B AE B W RIS LI sk iE S
hE, HHLE . A A S TR R L 45 A A N
WAL ST TRAFIRZS FL L AR, X R BT E LA
iR, A5 5 A LA OV U TR A, FER
FEWALTR S 1, 8 A= g A i DB

I (F): WAL T R & i S A R A B AR, R
WA GRUFE TR A 3o i v A R 24— 4 DA SR A B 3] 7=
Y Fp T R, SARLL S LG 2 BRI R A R
TN EL, SR B A T AR X RS R R E
235 TL U BH SUFE M T 1o 2 v 1 3 A 1 100 1T i AL A e
s A S AN R AT AE 2257

A (Cl): EAERER AL =3 b i S AR, 7R
KB R, R T R AR AR LR
R WAL Yl

HIGMAN Fll TAMP™ 4 56 75 45 A 1) 122 0 Ak A
BT 2R, W4 R A SR T E N EE
TBATHN . BRI R, BB R AE
B i e EZ A A S EMERICE — B E —
SEATCE BRI, DU SR AT A TP TR SR
FHICR A A5 PR R AR T I WL = A HLBR
FRA T . A DL 223 ) S e B A 5 0
VAL B SRR E, P R T R AR =)
H R SR A FEUR R, SRETE . SRkt R
Tl 6 2R R RN S o3 A AR A B 9 3R BH B TR
A7 B3t F ) R AR R K H 5 e R A
15, AT AR S 0 UM R B AR g
VPTG ORIE E BER AL 3E H, JErh T Y R A
B X e v T bRt 8 A A AR B R i e e T
TR e T PR A 36 RO 7= W B4 7 SR ALK,
H R 5 1 B 2 0 S5 1 ARV ek 55, 52
W T AR A = i . L1 AR 2TV S S s v AR
T AR R AV i 4 BB, #8 7R T 40 Na 58 S &
AR AR IS A () P T 5 5 7 ) A

6 PHESEMPHITE

6.1 # fi#
6.1.1 BPEILER

1) 48 (Na Fll K)o 7ERMFLFE D, AT PE Na
DUEBANTIURL . 23/ RUBE Rl & 5y S A £ rh s
BRESHIRET R, HAEARBLRIANIE 6 FRP™. 7E 600 °C
PIF, Na EZLLL Na (URIREY (A1 L FRER A FRER) (1)
% 2B P Wi AE 600 °C LA I, Na R KIFA R
(NaCl, Na,SO,) iy B>, A4 it 72, NaCl &
AT o 5 AL S R A T RO, T Na Fi
Cl L E EHA ML F 15 KU, QUYN P71 it
ME T Hipt B P Na A1 ClAYHE K o, & P S iR
JE 1 200 °C TFZ 500 °C B, 65%~75% ) Cl 4%k &
SAHH, T Na 5 & 1 HA 15%, 28 Na il C1 RS
JOF AR R 64T o R B B IK T NaCl 114 45 il vk
(801 °C), Atk NaCl RAELL NaCl(g) JERBeik, 2%
SRR, LA Na JRF IR 0B [RIRT, S AL
S RE HAT W R, A A o 2R Na FEBT B AL
WL, R BEOK M Na W] SR RO, TP A 5 i 8 o
SEA Na( 5 R RREAE s g i L 20! i Tk
ZHER,IFEAE CL S FHUKZESHERT, # & 1Y Na
DL Na HLJ5T | Na,O. NaCl Fll NaOH WJE A7 7E, bl
SRR B L A 2 A E U 1, Na K S Y 548
TARVESES — Mk M Na i F 3% . A%TE Na
FE LR RERR L T AR TR/ . NaCl 8ify
PLEE A Na 5B R -0 . A58 W A iU S Na i
FRTR 3 o Na 7E K K H 32 22 L NaCl, NaAlSi;Og F11
NaAlSiO, JASFAE, 76 WK F2L) NaCl Hl NaAlSiO,
FERAAED> 2, IFH, IR NaAISiO, 5 % 1<
HOK ZEA A RSN B B, KR Na #9495 %
TS PMLZGRM M2 F 8%, K ik T 5%
HIAE 400 °C ARG, ZJ5 2 700 °C H & 82U /N
3 sh 00 2520 (L 2 A IR B B R, KOO &
I AR, x5 K e EELURE LA
REMRER B UIAC . AR RS K kiR E:, A
227 °C FIRR KL oK, IFTE 660 C BRFEIE O
Flf, HZE 1000 CEIEKTEM L, BERT
1200 °C 52 FLA AL A AR (KAISi,06)

2) it 4 )8 (Ca F1 Mg). K&/ Ca F1 Mg 7E#4
i B P AR B ORI Ca W AL S TR AT
& BRREL . RIREh A HLLE A 2) AR A G .
Ca 7E 600~900 °C 5 A 1t Fifi st B T i v, IH AT
& Ca BRIRER TG PLAS & Ca FO53Mi, 1E 900~1 000 °C
JUP- AR (B RREE T 1000°C, K Ca 5% B & IT
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OH

H,CO

THOH
o
COONa
OH/-OMAl,
Na’
|HOH
#firt
= 0 /AR
CO,/CO

RN,

o.
BOLS -

o Na,SO,
o) * NaCl
o FANRERR Eh/REAS LLRR 2R

Nar

3%
g ‘

B - =

6 ISR R Na BOER L AL ML T

Fig.6 Na Transformation during high sodium coal pyrolysis®’

U R, I TS B R ER L 1 ol 7> e AR
TR, BRFRER A HLLE &2 Ca e IE N Ca0, 5
ORI B S W I RO B AL R RS Al 43 LY CaS
PR, A (CaSO, + 2H,0) fEMHEAE T ek
45 KT A A8 (CaSOy), B JE1E 900 °C LA FAY
WSS S CO WA L CaSP*, CaS HATRE
W s ARG fE sl b4 %, IF HERR P AR &
AL S CaSO,, LIHA B IS RAFAE T s rp 2%,
BRI I, o 0 A e R 4 2 22 L CaO il CaS i TE =X
FAEN AN, B FE b Ca 5 HAtb T (Si AN
Al M EAE BT K S TR & . X F S/Ca K
T 1B, RZH Ca B #0T LUE 4L CaS. Ca 5
Hofhor 2 A0 B AE RS Ca-Al-Si ZE40 rE R £R | Si
1 Si-ALJLPEA R . I H, 78 1 500 C 3
AL AAEM )51 5 [ A 9 g a9
MEAERU, T S/Ca< 1 WM, Hftt Zh a5
Ca tHHEAEH, BATKBEN “Ca-AL-ST” (B5 KA . 45
B KA 45 I “Ca-Fe-AL-Si” (FEA ), Mg i fa3s
Y5 Ca MR, Bl T 45 A . A R

8]

Mg FZELL MgO JEaUAAAE T b, IRl 3 T i a2 it
] & Mg fEFRER . & Mg 92 & A FN &5 55 3 58 A1 %
ARSI BE SRy 1250 °C B, K Mg 54t
5B (MgO). iBHE A (CaMg(Si,Al),0q). BE I
11 (Mg,SiO,) FI 4R i 1 (MgALO,). it & TH | =
1300 °C, Mg 5 Si. Al, Fe, Ca AHE.1EFH A= il & 86 15
£1 (Ca(AlMg,Fe)Si,0) % i B J+ & 1 400 C,
KRSy & Mg B Ak MgALO,, T & 86 A &
55K MR AR, R IR IR AR . K Sio,
5 Ca g &t T Mg, IRILER AN Si0, £ i JK
TE B &5 B & 5 ik R AR, W0 BE Ak F5 A1 (Ca;MgSi0g).
i 55 A1 (Ca,Mg(Si0,),) LA K & 8E 1 45 48 3 K A1
(CazMgo.zsAlLSSil.2507)[286]o il B AR SE T, X 2
BE WS A A

3)Fe. TEMMFELIFET, BWEH (FeS,) 7F 500 C LA
BB R WA (Fe, S, Horb x BUE L N
0~0.223), H-1E 800 °C B IE T Fegge, S, H A A
TS MEEH B R AR RAT N, BEr
S/Fe L i f5 B2k 04 S 4405 f 2, DN RAAIG T A
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BRow BRGSO A AR TR . B O L2 S R A
R ) R B R T L IR R A TR B R ) AR IR
JEARZ) 40 C, HUE GREER 1Y S Bl Z o L i
TR, FERE IS THE N B, RETER B WLl
REERE™ (Fes04)o FE 1000°C LA I, BERKH 52186 US4
BB 5 5 5 W 55 Akl FeO. Fe?'/Fe* Tifi % R BE M
1 100 °C FHETE] 1200 °C, BE AR A8 JF R M 1.08
BEEE R 239, 3 HAE 1200 °C LLFEAT I B8
B IS, FeO il FeyO, £ i B 44 55 65 v L A
W) A0 B T R A Fe ik A7 R R, W08 A
((Ca,Mg,Fe)Si,0¢)). B2 it A1 (FeAlLO,). kM
£ (Fe,Si0,). B 4k " (MgFe,0,) fil £k 41 # f1
Fe;Aly(SiO,); S0 ). 7RI R, Ik 900~
1300 °C B, B & BE i) i 80 55 k4 ) 4 935 2k
(Fe;0,). ALk (FeO), BeARdefifi (FeAlO,) FIHE
A1 (FeSi,Og); il FETH = 5 1300 °C B, #RADAS A1
(FeALO,) A (FeSi,04); 7E 1400°C LA L &2k 4
B TR R H A ( Fe,ALSisO 5 )Y,
UEAb, M Fe & R IR S 0 W05 7, FeO TEMRER
S 5 ALOS BN A ARAR AR S AT, T AE oy A
T BT 5 Si0, IR BV AT ( FeSi06 )™ 5 Bkiik
TR ER R AT o1, DM | AR S S TE
T KA, e s
6.1.2 THHEIGEK

TG R E B TR Y, RS
L (BN AER TP 1) Zn) 878 HAb S 1y b Bl I

(B, S8 ) He), FERREEMEH, Cr, Hg, Mn, Sb,

Se Fl i 2 1] LA sl o S5 A MR A G

It B, Ok (He) BT R 4 BB /T <
150 °C, 7R FE & He B 76 150~250 °C, HeCl, 5%
HAHLLE A Hg B 78 250~400 °C, HeS B ik R £h 45
4 Hg Bl 75 400~ 600 °C Z ], @8k 45 & R B
PN BRI R A TR A F) 800 °C B, v
80% LA - HYFRBEHL M P . BUNTPPURAEIA ) 2%
SRR B LT A (R R AR A X R 8 (725 °C) 4B
AR TS, AL A SE A B Heg(Un HeSe(g)) 1425, R
P T ICEK He(g)o TERFLAR, KEH /3 RI5 Y4 L)
TCERIMIE 0, TR e ARE S Bl 5 R 5
TS SRR iR, K5 Fe,05 AT4E AL
oy He' IRK ko He™ Y,

S (As) Z 5 WmE . S As IHE L
L BfLRE T G N, 2R AAE 300~600 C. 500 C
i, ALEE G As I As ¥ 4 /) T 2 5TRE 5 £E 500~
600 °C, As F4E K E A H #B0 101127, As Fl
S HH%E KR B — A RRAE I, 5B R g L —

B B THRMBE K 5, 7F 400 C FWLEE] As F1 S
() [ HE 2 AT A5 BT B 1 43, 76 550 °C TR
BT As Al S BRI FERAT N o B A R ER X i
(45 A i P i # P, Fe,04 Al CaS T
DLW BE AR RS R G 1Y B R £h (FeAs. FeAsO, Fll
Cay(AsO,))™ ", LAk, CaO FiI As W] filg i 1 1 BUA
555 As-Ca BAY), & Ml SRR Y i &
WAL AR 3R 2 7 4 R AR A TPl As 18 76 K
2 DR AR R FE R, As £ B TR AT, S 3L
As FIBHCRBAR™,

fifi (Se) 7E 0~1 000 °C. fit A M I 2 Vi R RS T mT 4
93 ANBEE: BrBE 1(0~300 °C), Se BECRZE 18 5,
(2) Bir Bt 2(300~500 °C), Se B jifg A& L H 3 it ; (3) Bir
Bt 3(500~1 000 °C), Se B il % 9z 48 34 fin It & T 16
FEPL XU S5 3 As (0 K 5 % A 7 300~
600 °C, 7EAIR T 500 C MIREE N, AHLES G As J& As
FE 5 10 E BTN , TAE 500~600 °C B, #8143
it SFE As R . BIRIG Se IBRICRAETE 50-70% 22
B BEAh, PR EETE R A 500~1 000 C B, 3AKAY
TP R S Y Se BOCRP?, #iid #ep, 57
Y153 f# 72 W) Y Fe,05. SiO, Fil ALO; 2l 3K As 7%
IR AR, ORI B (fdE Mg
Ca®" . AP Si*) XA AR R Se BB R B
M)A [ 24 B R EAIG T 400 °C 1), 3 263 ) 8 1 %of
Se BEHCZ MAAR /N, Y P B 1 400 °C B, B
TN Se BUREHC, (HA—HRAYE, Mg™ BRI
() Se H 43 LLAm il e i, SECLRCRACH 5% A4 .
i Ca® A1 FH B 55, 15 Se BUBEICR A 20% 5K
E%DOI]O

SRR Y (Pb) MRAFIEAS 2R T O v fn
B, SHALE PRI ORI, X 15 Pb e
PG Al R b AT R R R R ), 1000 C Y
TREETR, b Pb BECR 30%~65%, XAB KRR I HL
T Po 0 BIE 2 A T IR R R R S B 4
PR R A, P L PbS. PbSO, 1 PbCl, 1
i Zaw =) G I (1Y A= X 7/ L R (S = R s
PEHL, M5 — Rk &4 5K ALO, Fil Si0, S Jf:
B AEAR RERRER fA% b, SR R AR S DY), EAh,
MBRIREE N 1000°C 1F, Pb if DL BERa E AL W1 e
AT 000,

2 5 22 4ROV i A AR IR BE 15 F1 1600 °C, K
o345 (Cr) STCRAGIHR A IE D . AL
H, Cr 1Y R ZIE S SR REIRERSS A A e ER A AR
A, HFE PRS2t AR R AR
A%, Si-O PU A HIE A B &5# PRoT, AL AT RS



468 # %

F #®

2025 4F55 50 4

Si AL, B VU FC 7, T A R Al—Si Bl 25 ¥
i Cr 78 AL I Hr O VE AT AL S8 Cr' iRl
I 2 2 R AR RRER I 25 0T

G (Cd) TR EE S ERT . NEET 554
AL, SR IRAT e s ) SR B R AN
SATFR T, K2 309%~90% 1) Cd Bl 2 S AHB®,
ZHOU %P5 T Cd MR A7 IR 25 % A% & A7 1Y)
o, RIA NS G0 Cd TEIRIR T S5 &, Mk
iR AR AL S A AN Cd FE R TR T AT
K, BEARIAR S S AAE K45 B 1o (R A ) F Cd RS
62 &

6.2.1 THAESEIETE (N, S, Cl)

o B R R R A A% ) R SR T 8 B O R
ER L GICR, URRERRA R maeR . Jueet i
X | B AR A R P R AT RS e i R AR 9T
B, 900 °C Z i, KA ITCHLART B4 A F e 1A HLER
J3fi#; 900 ~1 000 °C 1, HAh I 2 A 23 [n] WE My i 5%
A, WEW B i 0 IR EE R T 1100 °C B, B HEm
WA BRI RES Rt | AT LR L S
1 SO, A iR TCALERAE 985 LL COS T8 2 HE i
M, X A BB S A

R D ST T R R R A A
TR R MR AT AT R RS . BIFST 4 SRR,
AR AR T K 2 R Bk, B Ak Ak
B MK 75 5 43, i WEW RN AL A 1 DU 46 1) - Bk
T o SRR 2 B AR AR B i, TS
LR AR R B R . AR R T R Y
AT ARG B[] AR R A D A £ A 187

YANFENG SHEN %55y 1 i i I A 5 v 45
R A AR A T A 0o R P B A e A AR s . 2501
W, BB K o R R I SR A SRS AR
BERIFEAEF, P2 T AR & I o T = R oy
PP A R DU AT USRI G R S A fE
VR, fR R DA & B SR S e R . B
R3S A i R AP R R DX TR A RE R A T £
g, W] DU R LSS TR OB, AR AR 2% 1Y B
T

GORNOSTAYEV 8 %P L g7 s fhad fit o, %
By BV E I FBORRI N TR AL B A TE
o B FEBELAS M ERA S AR, Wk 2 25
— I BB AT (3 AN S, 9 — 2 RE A B
) SUE LT 2R R AR . a0 5 i Ak
JE ), Fe—O Ml Fe—S—0 . o545 R, S
S BRI B2 B A SR B SR 25
X B8 B SCR 25 i SR SO, AR K S —iE £

IR AR AR . KBRS Bk L /NIRRT B 4k
ARG P 5 A, AR AN e e i 2 R ORI 4y
AR AL B e, B2 A RN

005 A W 5T T AR A A AR i ad E] R
F COGUENIER) SR MEBT . 4552, 7Ek AR
A FE, R 2 70% BB B TE Sk b, HARBRAE &
PEABY R SR EA TOHLER, A AP . 76
PRl B, A B P AR R R [ 2R P B ALk
FIENS . B AT AL A (4 T8 0 A7 A, AR MEBlA J5
B H,S, XS RN TE LB BB R SRR BRI, Ak
FEREALRT B, R R R REES A & A COG, WK £ 7k
HA A B AR R RIE W ] A SR HL,S I E A COG. £
SRS I S A G B T R A e Ak 0 TR A B
(800 % 8) °C I}, HrARIEAYIE K 40w i T 0LIR A o AR
J R AR B (R, 5 RIS S T . A7 [0
W 20% Y FERPIEEAR, IS G B VR R TR ) 20
g’ ZE A7, (B AT G F 30 ) 24 A e 0 e 3, g o
(8% AT RIS 0.2%

TR B A HILAR R By | 55 SEmR AL R i R
WAL . FEaR BRI PR & = 2 R R E LR
TR AR A HLER AR S e AL
BRAEAL R ENY . BEMEE R RRE, 78 5535 1000 °C (YR
JER ARG R ARG SR, WRAE AL BE AR
e E b, AT LA e my . FE AR AL BEIREE &
AAERT, B RA U AT LABERR . AR 3R <
G SR R AR B I T 0 o R T AR 8 A A
A AR I R, AR SN AR T 2
HNBH 28 2 B R EAR, AT 5 0 L SR Ik, il
A RE R T, OB R, R A E] 900 °C
R IK B KA, LIS B A %) bRt i v, an R4k
SETFEIRE IR E] 1000 °C i, PGB A ST, R I
RN BRI AR . A% R T A B D S R G 1L
SV : — oA RS E I E WML, 3 — Rl AR AR H,S .
PRS2 07 114 328 56 350 i L 1 T = AT RGN . #E 900 °C
PATF, Bif il B (0 35 0, 4 1] HoS 7 A0 i) R R Tt 1)
WEMMFEAL S . 85T 900 C, W RhH 2 TF 44 T % .
PRI, A Akt A Hp AR e VBB 1Y) fe AR R EE R 900 °C
Ao

SEIIT NOMURAP'HFSE T s S AR R G M fE it
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Fig.7 The migration mechanism of chlorine in coal during coking!
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Fig.10 Transformation and slagging mechanism of high-calcium fly ash particles and Mg-bearing minerals
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Fig.12 Trace element partitioning during coal combustion
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