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Abstract: Frequent mining disturbance or periodic rupture of far-field roof in coal seam mining will produce multiple vi-
bration loads, which have an important influence on the micro pore-fissure structure and macro mechanical behavior of
coal. In order to explore the evolution characteristics of pore-fissure structure of coal under vibration load, the SHPB test
system was used to carry out a multiple vibration load impact test on bituminous coal. With the help of low-field nuclear
magnetic resonance analyzer, the 7, spectrum of coal after each impact was tested, and MRI was performed to analyze the

law of pore distribution and evolution, and the damage evolution characteristics of coal pore-fissure structure were studied.
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The results demonstrate that the peak stress and dynamic elastic modulus of coal show a linear decline trend with the in-
crease of vibration load, and the impact effect of vibration load significantly weakens the bearing capacity and deforma-
tion resistance of coal, so it is necessary to conduct in-depth analysis on the evolution characteristics of coal pore cracks.
According to the T, spectrum and MRI information, the total pore volume of coal increases greatly under the first action of
vibration load, in which the adsorption pores volume increases by 5.0 times. With the increase of the number of vibration
loads, the volume of seepage pores begins to increase significantly, while the volume of adsorption pores remains basically
unchanged until the sample is completely destroyed. During the multiple action of the vibration load, the internal damage
of the coal body gradually accumulates from the initial point distribution to strip distribution until micro-cracks are formed.
With the multiple action of the vibration load, the microcracks of the coal sample begin to connect and converge to form
macrocracks, which greatly improves the connectivity between the seepage pores, and the overall porosity of the coal
sample reaches a peak value, about 6 times higher than the original porosity. During the whole process of coal body being
damaged and destroyed by vibration load, the connectivity of seepage pores is gradually increased and improved, and its
fractal dimension shows a linear decline trend. The MRI reveals the mechanism of vibration load on coal pore-fissure, and
the results show that the central region of the coal first develops and gradually forms microcracks. Under the action of re-
flection and stretching of subsequent vibration waves, the damaged areas gradually extend to both sides until penetrating
the sample.

Key words: vibration load; nuclear magnetic resonance technology(NMR); energy dissipation; pore-fissure evolution;
damage evolution mechanism
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Table 1 Proximate analysis results of coal sample
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