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Abstract: In the process of deep mining, the temperature of mine water is significantly higher than that of shallow coal
seams. The erosion of high-temperature hydrothermal fluids affects the physical and chemical characteristics of coal,

which in turn affects its spontaneous combustion process. To study the spontancous combustion characteristics and influ-
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encing mechanisms of coal under the influence of hydrothermal erosion in deep mining, through low-field nuclear magnet-
ic resonance, molecular dynamics simulation, mechanical test and C600 trace heat experiment, the influence of hydro-
thermal erosion on coal porosity, pore size distribution, mechanical strength and oxidation heat characteristic parameters
was analyzed. Combined with correlation analysis, the correlation between various parameters was quantitatively de-
scribed. The study results show that under the dual influence of thermal stress and swelling, the internal pore structure of
hydrothermal eroded coal changes significantly. There is a significant positive correlation between hydrothermal temperat-
ure and total porosity of coal, and the correlation coefficient is 0.97. With the increase of hydrothermal temperature, the
total porosity of coal increases from 0.24% to 1.35%, the proportion of micropores decreases from more than 69% to less
than 60%, and the proportion of mesopores and macropores increases. Coal body pore size significantly affects the oxy-
gen diffusion coefficient, which increases exponentially with a linear increase in coal body pore size. Under the influence
of hydrothermal erosion, the development of coal pores and the dissolution of some organic matter significantly reduce the
mechanical strength of coal. From raw coal to 80 °C hydrothermal eroded coal, the average compressive strength de-
creases from 23 MPa to 11.6 MPa, which is reduced by 50%. Compared with raw coal, the heat release intensity of hydro-
thermal erosion coal is higher and the heat release is greater. The heat release of TH40, TH50, TH60, TH70 and TH80 in-
crease by 12.61%, 16.63%, 17.32%, 19.36% and 25.02%, respectively. The correlation coefficient between hydrothermal
temperature and coal oxidation heat release is 0.92. Hydrothermal erosion significantly affects the porosity and oxidation
process of coal. As the hydrothermal temperature increases, the porosity of the coal body increases, the mechanical
strength weakens, the oxygen consumption and oxidation rate of the oxidation process accelerate, and the heat release in-
creases. Hydrothermal erosion coal has a higher risk of spontaneous combustion, and the higher the hydrothermal temper-

ature is, the greater the risk is.
Key words: coal spontaneous combustion; deep mining; hydrothermal erosion; pores; oxidation
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