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Abstract: Bed separation water, as a source of sudden water inrush induced by mining, is characterized by large instantan-
eous discharge, periodic occurrence, and subtle warning signs, making it highly hazardous and extremely challenging to
prevent and control. Taking the Zhaoxian Coal Mine in the Yonglong Mining Area of the Huanglong Coalfield as the
study area, a long-term multi-well pumping test was conducted on the Cretaceous aquifer. Hydraulic tomography inver-
sion technology, based on the Simultaneous Sequential Linear Estimation (SimSLE) algorithm, was used to analyze the
permeability evolution of the aquifer during mining. Finally, a mining-induced permeability evolution and bed separation
water accumulation model, incorporating vacuum negative pressure effects, was established through groundwater dynam-
ics and numerical simulation methods. The results indicate that: (DThe permeability of the Cretaceous aquifer in the
overlying strata exhibits a trend of initially increasing and then decreasing as mining progresses. Within the goaf, the per-
meability coefficient of the Cretaceous aquifer ranges from 0.115 to 1.96 m/d, indicating a permeability increase of 23 to
392 times. In the mining influence area, the permeability coefficient of the Cretaceous aquifer ranges from 0.005 to
0.333 m/d, showing a permeability increase of 1 to 67 times. In the horizontal plane, as the working face advances, the per-
meability in the front of the working face undergoes a sequential and progressive increase. (2Based on the conceptual
model of the convergence point in a semi-infinite aquifer, a theoretical model of bed separation water accumulation under
vacuum negative pressure was derived. A "circular island model" for classic steady-state conditions was developed using
COMSOL numerical simulation software. The numerical results showed minimal deviation from the theoretical model, in-
dicating that the bed separation water accumulation model established using COMSOL is reasonable and reliable. 3When
the permeability of individual blocks evolves sequentially, the bed separation water accumulation rate increases only
slightly. However, once all blocks evolve, the accumulation rate rises significantly from 14.09 m’/h to 98.95 m*/h, an in-
crease of 84.86 m’/h. Additionally, the water inflow rate under absolute vacuum is 2.5 m’/h higher than under standard at-
mospheric pressure. The proposed aquifer permeability evolution-bed separation water accumulation model provides a re-
search framework for predicting and analyzing the accumulation rate and evolution of high-level bed separation water.
Key words: bed separation water hazard; hydraulic tomography; permeability evolution; groundwater dynamics; bed
separation water accumulation model
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Fig.1 Geological overview of Zhaoxian coal mine and the "Inrush separation zone" model
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Table 1 Hydrogeological parameters of the multi-well pumping test
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Fig.2 Schematic of hydraulic tomography inversion stage division in the Cretaceous aquifer
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Table 2 Location of working faces corresponding to each hydraulic tomography inversion stage
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Fig.4 Results of hydraulic tomography inversion in the Cretaceous aquifer
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Table 3 Statistical results of permeability inversion in the Cretaceous aquifer for each stage
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Fig.5 Evolution of permeability coefficients at measurement points 1~4 in the working face 1305
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Table 4 Parameters of numerical model
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ke B, Bl A TR A ) AR R, T A B BUK R
GG, HLAE AR 2R AR A 2 X W e W R, %
MR Bl P A 3 R, LS U A A S A 3 T o
DA B R0 A W Rt B2 s A A Ry i A,
B2 2% (] A PR R AN BT DAY, D5 J2= 2 [ ) 5 97
FefE B2t A e AL 4R T, NI BR 1 B J2 i 787K

Iehh, A (10) T T A E AR A
FEANTR AR BB K R R, e gt e
XFEE, W 10 FiR, 2 FHAR 280D, B EUERY
BER KA B Ml EE, A RLE— 2R R B 25 T
M AERETH RIS 5 K R B R AL R
BUKHE R IR

00f —
oA “ 4 A A A
7025
H r=0.1 mfif T it
= o020F = r=0.1 miﬁfﬂﬁ'ﬁ%’
@ r=1 miEHTiR
ol 0.15 o =1 miﬁlﬁﬁ'ﬁﬁ
=0T — =5 migHR
= A =S mEE A
50,10
Hoosk ¢ °® © ° .
0 [ & —_— - |
0 20 40 60 80 100

I REEREEP, /kPa
10 AN[F]AR A [ UK S A R A5 AT g ) L
Fig.10 Comparison between numerical and analytical solutions

of water accumulation rates at different radii convergence points

4 EEEHERAKESEHRU-BERK
=

MR SO T 25 2R, BEZ Rl B rE R 5K
B EEFAE— AR AR B, T8 5 ) el AR S 25 3
B JEBUK BRI ARk, PR AR5 3 52 COMSOL %%
(EHAES T EIRAER SR ZBE - 2
FRAEARY, BT T TAE B3 R A 2 2 B UKGE R 11
A

Bl TAETH AR, B33 REONF IR KRIRE T
1 0.005 m/d W] ZR ¥ 1k B 5 KA 1.96 m/d, 4Nl 5
6 fit7N, B &M R AL S & B2 UKL,
PR AS B AR AR BB 1304 T AR 10 A 9], K% 1R
B R KB R R EK)ZE M5 B A,
HEST SR B A5 i T A R B UK, 11 fr
o B 1a PEALE) 43 KO~ 1304 TAETR )
T AR R SKZ, 4 K@ KRR X 57K
o iE R RERE OB R S B R RS



552 4]

v A% BEIRAER SKER S B R ( 3 R UK 1051

20}

;?15 *%
£ ——®
S 10 @
NG —— ®
;go.s

0 2x10° 4x10° 6x10° 8x10°
HE]/s
(b) BIE RECHEA LT

F 11 BadE e -2 2 RO Js 3 2R et
Fig.11 Schematic diagram of the mining-induced permeability
evolution-bed separation water accumulation model and design of
permeability coefficient evolution
X8 5 K 2 B2 3 R B A LR 5 2 COM-
SOL BB B o, 1R 338 [l 35 7K 2= 19 45 20 X
O~GE % F K K BER R K A2 4, 10 116 F7R,
HRAEAS R (4 2R Sz L E AR 4y XD~ @B id vk
T AL A IR ) AN R, B AR R BB 28 | AR 1 K
AT, D T TR TRLEL, 5 AR AR KR X ERE 1 AR

(c)2500s

AR E] ) BRER 1000 s, fe X343k B i KB 6 28
1.96 m/d.,

B A v 5 K 2 R BEAR 4l 55 R R B S (E 1 B
200 m, FEAY ) PO SR R e K Sk A Hy=400 m, #145
AU N FL R T K, BIAG /K Sk H=400 m, 4 T /ET
R RAOK G R, B 85 225 [ R AR B
26.81 m, S HISRAE T B 2 S A AR R R A X
25 2 FE LR S K2 B IRERIE

DS J2 25 () 446 X L A DR 2 A A A0 5 2R A 431,
Bl 12 JIR, W EGAS R B 20 2 B % 30 B R sl
BB A, HF K B ZE A 0] R sl B SR e,
BaE e R A AR R S K E N IR T N A
R K Sk 25 [ & B, 85 )22 [B) A L2 17 e Ve R A
SR I3 BBl AL % (A SR 28, YRR sl ) B 75 K 2 32 31
J2 B A T R B, OGO AL ZI M 4 500~ 5 500 s
LR, 2807 B8 228 [ T e B 1 &K 2 X 0B 8
PERAE AL (5000 s) Ji, B2 ELAS T7URAE BRI 1%
FEEEA R A GG, HAEAER S IX A —E 52
M), LR 4D 37 2t AR A5 S IO

h T M B B A R BUK G R K
PAREAE DL, FERE R B T 4 A ERE, REH L B
ST G3 L. G4 fL. G7 FLLA K 1304 TAEM R4S X
HER . A&l 13 s, Sad RS K 2 X s iE
AL, BRI 2R BT R RS, T B 3 M
HALPTE I AL SR B R, A WAL AR e 7K
N, HEE BN K2 X B S
AT AR, AN FLA B B AR AR e KA . M
KIWFE KPR, Reas X H R A R e K AL e fi, H

(d)3500s



1052 # %

2025 4F55 50 4

(e) 4500 s

(£)5500s

K12 BadE i -2 BUK BRI AN R 20Kk S EA S ]

Fig.12 Contour lines of hydraulic head and streamlines at different times for the permeability evolution-bed separation

water accumulation model

N G4 fLAKAL, G4 FLIK A7 /Y SR KT G3 FLFI
G7 flo TES NI B SE bR KA AT, 5 B0 7 108 BH 1Y) S
M T I KL GO AGE, FETER AL B R IR, TRt
AU A T (R 7K AL B R SR T T AR T8 BRI A SE PR
IR, BERMCHE B K EMEAL R AR R /K )2, R A
RUFIIR A KA [ M ( EL AT 22 Sk, (ER BRI A6 A5 Ak
R R B — 2, &l 14 FiR, G4 FLK
PEFEIE T G3 £L; G7 FLANAESE 2 IRZEK TG T
TR W, FLREIE L G4 FLREIR AR

400 | —— G4
x:s_:a&tt:} —— G3
350 F G7
300 — REX
250 |
g s+ a4
=200 F ——
> ),
o150 b
100 -
50 | i
0_

0 2x10°  4x10°  6x10°  8x10° 1x10*
FF 8] /s

K13 Bt s 2 BUKASY R AU FL K 037 sl 2k 14
Fig.13 Water level curve of virtual observation well in the
permeability evolution-bed separation water accumulation model

LEAh, R AR v g SR BR T A Jo e e AT AR
g3, ARAG T A I 2038 2 BR T b A B
(kg/s), AT 7K A28 BERE HAE AL R B 2 BUK R (m/h),
Mini# 2] T B R BUKE RS fh 4, ik 15 Jos .
M T RIRE T AR I—HA A S KZB Bz,
T 15 2 25 (8] T AR IX s MR K AR AL AT, B2 UK
MR BN, BT X PGB B — KA AL, 8=
BUK AT /NIRRT, B2 T A X P0B &
A AL, B2 2 R Y BUK A5 B 2 52T,
14.09 m’/h $2F+5 T 98.95 m’/h, 42 FHIRE TS 84.86 m™/h,
(7] P 24 3% 45 RS TR A T AR R R R 7K 3R

2.5m’/h,
12800 o //’\\j/“\\\
1270} — G4
—G7
1260 F )
H—IRIK KK
£ 1250k
N . T
8 |0
Z1240F
1230 \M/“
1220} h//ﬂ
S S Y v
Al \ \ N \ AR A SR
fLQ’L“\ qp’ﬁn’ fLQ’L“PJ fLQ’L“\ qp’?—“\s fLQ’L“\ fLQ’L“\ fLQ’L“\
fit (]
&l 14 1304 TAEMZEKHTE RKUALAK A ARt 2k

Fig.14 Water level variation curve of long observation well

before and after inrush in the working face 1304

ol — i/ﬂ&‘i(i)ii 98.95
_ —— XA 0645
= 80}
&
o 60f
o B 2 53 ) 4T
= 40t FRJE X R
H& KR A48
P | B )27 (]
20 1321 Nla09  FR7EX R
KRAEAR
0 1 1 1 1 1
0 2x10°  4x103 6x103 8x10°
it [a]/s
El 15 BEEBUKBRS A LA

Fig.15 Dynamic curve of bed separation water accumulation rate

5 & i

(1) DALY (12 2 /K 2 LK 56 ol At 36
TRl S A5 (SimSLE), KK J1) 24
A B R K2 T B B RO AR, SRAEAS
] LR B BB 8 R A s ) A A B . SR A
IKJZ 53 P M S B3 K 5 s/ N A 3, R A X



552 4]

v 65 BIRAERSKIZ RS BG5S 32 BUK R

1053

N 2 R EK 2B E RO 0.115~1.96 m/d, &
BERIK 23~392 %, RGN R 5 K2
B 1% 250N 0.005~0.333 m/d, BB K 1~67 7.
VI L, BEE TAR P Rr e e, TARIET 785
PRI T 15 A T A R

(2) SRR 7K Bl 772 v TR K 2 A 25 T
SIS, FIEEE RS AEEM, S TRETHE
ERUK S A2, 8k COMSOL Bl #4155 1 3
JE KR AN GBI (0 SRR o 388 2o 501 e A
Brfgxt th, 2 F i EAm 2250, U] LR R ERE 25
IEH/E,MJ BT BAR TR 5T 5 K )2 9808 P AL %

%E’J}?}

(3) Lumxﬁﬁ%;ﬁﬁ}fﬁ@& LT ORBVEA
BB 2 BUKRL, 45 5L, MiE R A
B @{;‘WK(E@B’JL@?HK R KRR35 A ) R
B B SR e, SR Bl [ 1% Y 4 T 8 4, 2 U2 2 Rl 1)
L2507 AR FTE R S0 [l AR R 0 B A2, Y 3 R B 7
] - AOULI AL G4 7K AN T R B R, A3 Bl P K
JEZ B B2 I R B

2% CHk(References):

[11 R, PR, ERE. HeBROBIEIF R
43(1): 1-13.
QIAN Minggao, XU Jialin, WANG Jiachen. Further on the sustain-
able mining of coal[J]. Journal of China Coal Society, 2018, 43(1):
1-13.

[2] WA, RSEn, KK, 2025 4Eh [E fE
[0]. SR, 2019, 44(7): 1949—1960.
XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy

JER2-4R, 2018,

I B B SR B

consumption and coal demand of China in 2025[J]. Journal of China
Coal Society, 2019, 44(7): 1949—1960.

[3] WAIF, AR, B, A5 PR E AR R RERAT I R LIS ).
HEHFAR, 2021, 46(7): 2197-2211.
XIE Heping, REN Shihua, XIE Yachen, et al. Development oppor-
tunities of the coal industry towards the goal of carbon neutrality[J].
Journal of China Coal Society, 2021, 46(7): 2197-2211.

[4] xE5e, ERIC, DA, 55 R EEE 30 079 H UFTt e KOs i
HAET]. 54, 2023, 48(5): 1825-1845.
YUAN Liang, WANG Enyuan, MA Yankun, et al. Research pro-
gress of coal and rock dynamic disasters and scientific and technolo-
gical problems in China[J]. Journal of China Coal Society, 2023,
48(5): 1825-1845.

[5] #HEBT, WA, Ei, % 50K 2 a0k 2 208 AR ToUR 7k
B ARSI ], BEsc2E4R, 2020, 45(7): 2367-2375.
DONG Shuning, JI Yadong, WANG Hao, et al. Prevention and con-
trol technology and application of roof water disaster in Jurassic coal
field of Ordos Basin[J]. Journal of China Coal Society2020, 45(7):
2367-2375.

[6] H#ATT, B, TR/, S5, BRPU A B BB K R B R R IE TR B

(7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

AR B4R, 2024, 49(2): 902-916.
DONG Shuning, FAN Min, GUO Xiaoming, et al. Characteristics
and prevention and control techniques of typical water hazards in
coal mines in Shaanxi Province[J]. Journal of China Coal Society,
2024, 49(2): 902-916.
B — L, 2, B, AF. FRIER R F SRSORHIE . B S5 BiR
R[] BHRFFEAR, 2023, 51(7): 1-14.
ZENG Yifan, WU Qiang, ZHAO Suqi, et al. Characteristics, causes,
and prevention measures of coal mine water hazard accidents in
China[J]. Coal Science and Technology, 2023, 51(7): 1-14.
W — L, AR, R, 55 T EIR RS TR K B B LI S
B AR D). AR, 2024, 49(3): 1539-1555.
ZENG Yifan, ZHU Huicong, WU Qiang, et al. Disaster-causing
mechanism and prevention and control path of different types of coal
seam roof water disasters in China[J]. Journal of China Coal Society,
2024, 49(3): 1539-1555.
Fedh, R, RN, 45 SR B i A0 s 2 AL IR SO (5%)
JKETIRAF EAFFET]. BHERBLF AR, 2021, 49(2): 194-205.
QIAO Wei, ZHAO Shilong, LI Liangang, et al. Study on evolution
features of high level overburden separation layer and precursor in-
formation of water inrush during coal mining[J]. Coal Science and
Technology, 2021, 49(2): 194-205.
Tefhs, XV, dtek, 55, MRl A B 2K BUR R R &
L BMTPA[I]. B4R, 2024, 49(4): 2031-2044.
QIAO Wei, LIU Mengnan, MENG Xiangsheng, et al. Exploration
and prediction evaluation on causative factors of water inrush from
separation layers of mining overburden in coal mines[J]. Journal of
China Coal Society, 2024, 49(4): 2031-2044.
Tefh, FRESC, 230F, %5 B0 TR 5 2K B ML pL ] . 300
B BRAEOR D] BEHFAR, 2021, 46(2): 507-522.
QIAO Wei, WANG Zhiwen, LI Wenping, et al. Formation mechan-
ism, disaster-causing mechanism and prevention technology of roof
bed separation water disaster in coal mines[J]. Journal of China Coal
Society, 2021, 46(2): 507-522.
EFo%Is, MRRER, BER . 82 AR i) ok
BIFFEI]. BEBBLEAHIAR, 2020, 48(5): 149-156.
SHU Zongyun, HE Biaoqging, LI Ling. Study on mechanism of sep-

B & B R KL

aration strata water-inrush induced by impact energy of key strata
abrupt breaking[J]. Coal Science and Technology, 2020, 48(5):
149-156.

ZR/NEE WA N AR S B2 K IR AL S [D]. £ o
Ik R, 2011

LI Xiaoqin. Study on the inrush mechanism of the water in bed sep-
aration due to repeated coal mining under hard rock[D]. Xuzhou:
China University of Mining and Technology, 2011.

FAN K F, HE J H, LI W P, et al. Dynamic evolution and identifica-
tion of bed separation in overburden during coal mining[J]. Rock
Mechanics and Rock Engineering, 2022, 55(7): 4015—4030.

HEJH, LI W P, FAN K F, et al. A method for predicting the water-
flowing fractured zone height based on an improved key stratum
theory[J]. International Journal of Mining Science and Technology,
2023, 33(1): 61-71.

BE)T, B IR, AT, 59 8 K FCE R IR A BLIRPLE 5 B


https://doi.org/10.1007/s00603-022-02855-2
https://doi.org/10.1007/s00603-022-02855-2
https://doi.org/10.1016/j.ijmst.2022.09.021

1054

%X

Fi:3 2025 4E45 50 %

[17]

[18]

[19]

[20]

[21]

[22]

(23]

WA DLW IX R B[] R
3154-3163.
LU Yuguang, XIAO Qinghua, CHENG Jiulong. Mechanism and

4%, 2019, 44(10):

prevention of water-sand inrush in soft rock with weakly abundant
water: A case study in Shanghai temple mining area[J]. Journal of
China Coal Society, 2019, 44(10): 3154-3163.

VEREMS, JA5°, WAL, 55, B R BUKI A S5 vk BB 2 9K i
DIBRPE IR BHRET" 1304 TARIZEK N B, BEoF4H, 2022, 47(8):
3083-3090.

XU Jinpeng, ZHOU Yu, PU Zaohong, et al. Calculation method of
separated water accumulation in the process of separated water in-
rush and its forecast: Taking the water inrush at 1304 working face
of Zhaoxian Coal Mine in Shaanxi Province as an example[J].
Journal of China Coal Society, 2022, 47(8): 3083—3090.
PReih. BEZIPR P B R AR ERASRT LS
HI[D]. FH: HrEG LR, 2022.

CHEN Weichi. Bed separation dynamic development and response

JKJZ R BEAL

mechanism of extra-thick cretaceous aquifer induced by coal min-
ing[D]. Xuzhou: China University of Mining and Technology, 2022.
TAMMETTA P. Estimation of the change in hydraulic conductivity
above mined longwall panels[J]. Ground Water, 2015, 53(1):
122-129.
IREEL BRI, BRK, 55 H)2 R SR SCHL BT S 40 AL 5 5
A ST R ). BRI, 2023, 48(2): 833-845.
XU Zhimin, CHEN Tianci, CHEN Ge, et al. Hydrogeological para-
meter evolution of coal seam roof and dynamic calculation method
of mine water inflow[J]. Journal of China Coal Society, 2023, 48(2):
833-845.
TeAhs, 2301, 2/NEE. SRIGTIR 252K TR I 28K HLELK
PR []. R 5484 TR, 2011, 28(1): 96-104.
QIAO Wei, LI Wenping, LI Xiaogin. Mechanism of “hydrostatic
water-inrush” and countermeasures for water inrush in roof bed sep-
aration of a mining face[J]. Journal of Mining & Safety Engineering,
2011, 28(1): 96—104.
T, BB, 2Py, 4. FRGZ SRMOT R U )2 A L]
AL A A 1S TR, 2014, 33(10):
2076—2084.
QIAO Wei, HUANG Yang, YUAN Zhongbang, et al. Formation
and prevention of water inrush from roof bed separation with full-
mechanized caving mining of ultra thick coal seam[J]. Chinese
Journal of Rock Mechanics and Engineering, 2014, 33(10):
2076—2084.
T, XA, 253N, 45, RENELE “GOKES 2 A RSk
iﬁlmniﬁi)iawkﬁ%ﬁﬁﬁ[n. B, 2023, 48(2): 818-832.
QIAO Wei, LIU Mengnan, LI Liangang, et al. Disaster mechanism

induced by structure evolution of “water-inrushing separation zone”

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

of mining rock mass and prediction method of water inrush from
separation layer[J]. Journal of China Coal Society, 2023, 48(2):
818-832.

TESLAE, PVEHE, TOOHG, 55 K ENTIE G S Ak A S AR Y B
FKEBIE R ECH LT, JuERRLS, 2017, 42(2): 307-314.
JIANG Liqun, SUN Ronglin, WANG Wenmei, et al. Comparison of
hydraulic tomography and Kriging for estimating hydraulic conduct-
ivity of a heterogeneous aquifer[J]. Earth Science, 2017, 42(2):
307-314.

AHGER, TR, XIFOR, 55 BT K Z T T 7R 5k
JRE AT, AR SCHUBT LA, 2021, 48(1): 1-9.
ZHAO Ruijue, MAO Deqiang, LIU Zaibin, et al. An analysis of se-
quential water releasing tests of the confined aquifers in a coal mine
based on hydraulic tomography[J]. Hydrogeology & Engineering
Geology, 2021, 48(1): 1-9.

FRA. B ACETRE BN BUR ER—7K J1 )2 S ik S TR
[D]. BFr: INARE, 2021.

WANG Xintong. Tracer-hydraulic tomography inversion method
and application for complex karst conduit medium imaging[D]. Jin-
an: Shandong University, 2021.

AR, PR 2 7 B 8 2 R B AL R IE B 2K RT IR A5 L 9 (D).
TRM: B LR AE, 2022

ZHAO Shilong. Study on the characteristics of fracture evolution in
jurassic overburden separation and precursor information of separ-
ated water inrush[D]. Xuzhou: China University of Mining and
Technology, 2022.

K. RO B IR S KZ B BRI 28 WAL MATSE [D]. M.
LR, 2023.

ZHANG Lei. Temporal and spatial evolution of overburden ultra
thick aquifer permeability during coal seam extraction[D]. Xuzhou:
China University of Mining and Technology, 2023.

SRS, JEMAER, sKARTE, 2. RS RS T RS RS
BABEEEANED]. R 5% 2T, 2024, 41(6):
1230-1240.

ZHANG Shizhong, FAN Gangwei, ZHANG Dongsheng, et al. Min-
ing-induced permeability evolution in weakly cemented strata under
stress-damage-seepage coupling[J]. Journal of Mining & Safety En-
gineering, 2024, 41(6): 1230—1240.

ARPHI. Rl R B WEIRRFE BB B Y AL D). 15
LR, 2020,

YU Yihe. Deformation characteristics and permeability evolution-
laws of strata on stope boundary[D]. Xuzhou: China University of
Mining and Technology, 2020.

Mhsed, R, U, HRK B 32 M]. 5 R Jbnt: #Bt i Rt
2011.


https://doi.org/10.1111/gwat.12153
https://doi.org/10.3969/j.issn.1673-3363.2011.01.019
https://doi.org/10.3969/j.issn.1673-3363.2011.01.019

	1 研究区概况
	2 基于水力层析反演的含水层采动渗透性演化规律
	2.1 群孔抽水试验
	2.2 水力层析反演数值模拟
	2.2.1 水力层析反演原理
	2.2.2 水力层析反演数值模型

	2.3 水力层析分阶段反演结果和分析

	3 考虑真空负压的离层积水模型
	3.1 基于地下水动力学的离层积水理论模型
	3.2 真空负压作用下的稳定承压空间汇点数值模拟

	4 巨厚白垩系含水层渗透性演化–离层积水模型
	5 结　　论
	参考文献

