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The promotion mechanism of how biochar affects the reclaimed soil microbial
carbon sequestration capacity in coal mining areas

MA Jing', ZOU Ming', LUO Zhanbin', ZHU Yanfeng®, YANG Yongjun’, CHEN Fu"?

(1.School of Public Administration, Hohai University, Nanjing 211100, China; 2. Engineering Research Center of Ministry of Education for Mine Ecologic-
al Restoration, China University of Mining and Technology, Xuzhou 221116, China)

Abstract: Biochar application is a key measure for enhancing soil quality. However, the impact of biochar applications on
the reclaimed soil for improvement on soil physicochemical properties, enzyme activity and microbial diversity is still un-
clear, especially for the promotion mechanism of microbial carbon sequestration capacity. This study applied three kinds
of biochar originated from straw containing rice straw, wheat straw, and corn straw to mine reclaimed soil, measured the

effects of biochar addition on the physicochemical properties, enzyme activity, and carbon management index of re-
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claimed soil, and analyzed the variation of soil microbial community structure and carbon sequestration functional genes.
From the experimental results, the main conclusions are shown as follows: (D The soil pH, electrical conductivity, am-
monium nitrogen, nitrate nitrogen, available phosphorus, and available potassium content in the biochar-added groups sig-
nificantly increased (P < 0.05), and the activities of B-glucosidase (BG), cellobiohydrolase (CBH), and leucine
aminopeptidase (LAP) were enhanced, whereas the activity of B—N-acetylglucosaminidase (NAG) decreased by 15.0% to
25.0%. (2 Biochar addition increased the a diversity index of soil microbial community, while the effect on bacterial a di-
versity index was significantly higher than that of fungi. Biochar addition increased the relative abundance of Proteobac-
teria and Chloroflexi (P < 0.05), while decreased the relative abundance of Actinobacteriota. In addition, it reduced the re-
lative abundance of Ascomycota in fungi and significantly increased the relative abundance of Basidiomycota (P < 0.05).
The three biochar treatments enhanced bacterial network complexity, but biochar addition did not significantly affect the
fungal network complexity. (3 The soil carbon management index of rice straw biochar, wheat straw biochar, and corn
straw biochar treatments increased by 4.7%, 4.8%, and 24.0%, respectively. Compared to the control group, the absolute
abundance of carbon sequestration functional gene CBBL (the encoding gene of ribulose bisphosphate carboxylase large
subunit) in the straw biochar treatment group significantly increased (P < 0.05). The absolute abundance of carbon se-
questration functional gene PMOA (the encoding gene of particulate methane monooxygenase B subunit) in the corn straw
biochar treatment group significantly increased (P < 0.05). Biochar addition significantly improved the correlations among
environmental factors, carbon sequestration functional genes, and carbon management index, with the microbial com-
munity being the main controlling factor to regulate soil carbon sequestration potential, which could provide important
basis for the future ecological restoration of mines, carbon sequestration and sink enhancement.

Key words: reclaimed soil; biochar; microbial community; functional genes; carbon sequestration potential
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Table 1 Basic properties of reclaimed soil

4 Fait M
pH HLFH/(US - om ™) -1 e st -1 e -1 - -1
HHlk(g - kg ) AR (mg - kg ) &R (@mg - kg) AW (mg - kg )
5.33+0.15 357+10.5 10.4+0.44 1.97+0.67 2.10+0.87 3.50+0.03

1.2 HARERLE
1.2 R

AREFLIE AT 3 FAEYR, 000 K RERS AT
AW . /INFERERT AL W 5 A T KRS AT A W e, W ST
TR SRR A R AR . iAW e il #5253 an

T SN 3 RNRS A IR A R B B T oK e R D
3, WG TE 75 C WMEAE rh b T, 2 5 B A 2
50 H i, P Ak B S 04 A 9 5 JOREE B AR A T
LR35 10 °C BRI ZE 500 <C, IF7E 500 C T
145 2 h, HFS PR A 500 °C BURSFHAEYIH (3 2).

R2 AEEVRERELHER

Table 2 Basic physicochemical characteristics of different biochar

TCER T U %
SRt pH K53 1%
C N H
IKAEREFE 9.20+0.14 50.11+0.21 0.81+0.04 4.14+0.09 6.16+0.85
INZRERT 9.33+0.17 55.75+0.49 0.87+0.03 4.87+0.12 6.78+1.54
FAKFEFT 9.46+0.15 64.75+0.67 0.97+0.04 5.78+0.12 5.23+1.43
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Fig.1 Schematic diagram of pot experiment
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Fig.2 The effects of biochar on reclaimed soil physicochemical properties
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Fig.3 Effects of biochar on reclaimed soil enzyme activity
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Fig.5 Principal coordinate analysis of bacterial and fungal communities under different biochar treatments
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Table3 The PERMANOVA results of adding biochar to soil microbial community  diversity
) 253 FI B2 Fogitit R’ P
CKxRB 1 0.160 1.291 0.139 0.009
Faiife) CKxWB 1 0.143 1.229 0.133 0.007
CKxCB 1 0.185 1.468 0.155 0.009
CKxRB 1 0.096 2.001 0.200 0.008
HH CKxWB 1 0.158 2.363 0.228 0.007
CKxCB 1 0.100 2.201 0.215 0.009
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Fig.6 Phylum-level community composition of bacterial and fungal communities under different biochar treatments
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Table 4 Topological characteristics of microbial co-occurrence networks under different treatments

AN LA
RN

CK RB WB CB CK RB WB CB

Rt 470 166 159 150 112 111 104 103

BUIE 469 480 408 434 230 212 211 257
IEARSEHEL Y /% 71.86 73.54 79.66 79.26 76.96 78.3 72.42 71.71
TAHIEHEL S /% 28.14 26.46 20.34 20.74 23.04 21.7 27.58 25.29
SR 2.00 5.78 5.13 5.79 4.11 3.82 4.06 4.99
RRRH 0.85 0.92 0.90 0.92 0.92 091 0.92 0.93
T R 0.95 0.88 0.89 0.87 0.89 0.90 0.91 0.90
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Fig.10 Promotion mechanism of biochar on the carbon sequestration potential of reclaimed soil microorganism
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