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Mining coal-rock interface nodal GPR rapid dynamic detection system and experi-
mental research
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Abstract: Coal-rock interface recognition technology is one of the key technologies for intelligent mining in coal mines.
Based on high-frequency radar wave detection technology, high-precision detection of coal-rock interfaces can be
achieved with mining, but there are still safety risks for equipment caused by rib spalling and roof caving in ultra-high
mining heights (=6 m) in mines, as well as spatial restrictions on equipment passing through during sudden changes in
mining height (mining height <2 m). Based on previous work, this paper proposes a rapid dynamic detection system and

method for coal-rock interfaces in mines using nodal GPR. The main contents include: (D Explaining the principle of the
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nodal GPR observation system in mines, designing a coal-rock interface recognition observation system plan and radar an-
tenna sensor installation method based on the actual environment of the mine working face; @ Studying and proposing a
nodal acquisition control system and information interaction transmission design plan to achieve dynamic data acquisition,
control, and storage; (3 Studying and proposing enhanced processing methods for sensor detection data and coal-rock in-
terface recognition algorithms based on nodal acquisition methods and radar reflection echo characteristics of coal-rock in-
terfaces, which can effectively achieve intelligent recognition and tracking of coal-rock interfaces, as well as calculation of
coal seam thickness and spatial coordinates. To verify the feasibility of this method, multiple geological radar antenna
sensors with a center frequency of 1.5 GHz were used for physical model verification experiments, and a comparative ana-
lysis of nodal data acquisition and continuous data acquisition results was conducted. The experimental results show that
both nodal and continuous acquisition methods can effectively identify coal-rock interfaces. Compared with continuous
acquisition methods, the nodal detection method proposed in this paper can achieve rapid and dynamic repetitive data ac-
quisition, with a single acquisition time controlled within 10 seconds, an average error of 1.07 cm for coal seam thickness

detection results, a maximum error of 1.47 cm, and an average error percentage of 7.64%. This method provides technical

support for dynamic high-precision detection of coal-rock interfaces in intelligent mining in mines.

Key words: coal and rock identification; geological radar; nodal GPR observation system; error analysis
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Fig.2 Technical architecture diagram of nodal radar rapid dynamic detection
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