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Abstract: The safety in the coal-producing mines in China is continuously improving, but coal and gas outburst accidents

still occur. The prediction of coal and gas outbursts allows the scientific application of outburst prevention measures,
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which can ensure the safe coal mining to a certain extent. Machine learning is an interdisciplinary field involving probabil-
ity theory, statistics, and computer science, which can explore the nonlinear relationship between outburst accidents and its
associated indicators. The application of machine learning in coal and gas outburst prediction has received relatively wide-
spread attention, and with the rapid progress of artificial intelligence and computer technology, it will play a greater role in
the field of outburst prediction. Therefore, this paper provides a comprehensive review of the research on machine learn-
ing in coal and gas outburst prediction, analyzes the difficulties in outburst prediction and prospects its development direc-
tion. Firstly, the paper provides a brief overview of the research status on the hypothesis, occurrence mechanism, and pre-
diction index selection of coal and gas outbursts. Then, it summarizes the research progress in the field of outburst predic-
tion, including the application of support vector machines, neural networks, extreme learning machines, and ensemble
learning algorithms. In addition, it also points out the existing problems in the current research, such as imbalanced
samples, missing data indicators, and small sample sizes. Finally, the paper gives an outlook on the developments of coal
and gas outburst prediction based on machine learning, including improving algorithm performance, optimizing feature en-

gineering, and increasing sample size. With the continuous improvement of computer performance, more powerful mod-

els may be proposed, which can further improve the prediction accuracy of outburst accidents.

Key words: coal and gas outburst; machine learning; outburst prediction; feature selection
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28 o Geitny SCHk v 2k T ECHE 3 4 R a8 1 i 25k 1 S
MREIEAAA A, (HJ2 T 3 a TR AT 45 E, B L
(1827 5 TN ) T3 3 R A el D B A o
221 FRGMHHT

¥ W% 43 47 1 (Principal Components Analysis,
PCA) LR —Fh 12 R A B JC M 2 1 s, T80
REAEFRRIE SR, 12007 Wil ik AT L MRS 4, B I
B S 22— AR AR 2 [, (AT R IE HAT
KI5 22, ARG G F2E 8. X T4
FEW) my A n EEE X, = (xpl,xpz,--- ,xpn), KRHEnAF
LAY, B SR B SRAEAE W U 7 2556 B X, X I n
FEAEL X R R AIE 1) B 5 M W, SR 5 X F AR AR 3l 1
3 (3) 22k

Z=W'X, 3)

Hor, X, 0 B AERTRUE ;s Z N 45 RO o SEBRIY
Fh, 8 AR 2 B4 J5 ) 2 8o n O E, TR e
JL4Y TR

PCA [E4E R L A4, et m AR Lok R4t g
#2111 4% PCA(Kernel PCA, KPCA), KPCA Sl i g
I 2 R S5 81 v 4 235 () SR J P DA o A AR 31— AR i
no HAZ PRI T

My

> o(x0)p(x2) W =iw )

i=1
Horp, o) M ek AR . LT PCA, KPCA
3 1A PR R B AR S AR R 2 ST RE T, (B JE A
BT
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TEE S FT R I F o, JCie & PCA i6/2 KPCA,
HB T LUK o 4 B R AR, i IO A, $E
TSR . RGP 3 5430 Hr W2 B
WiE 7 | AR IR B PE R BRI Z B M R RS 8 MR
PRAPERICE 4 A~ E RS (UM T AR (5 2. 85.28% HIfS
SR, WD AR B R AR 22, [ A X AR R 47
o T i3 TRMEAR R, X T ARZR I R 5L
fit, PCA HA JRfR . 355 B2 th b Z A0 56 &R
S R AR LR, RSP VET S 5 B3 2% H
R R B ) AR T 5T, R EL AT AR T e 5 1
% A T SRS AL | 0% FUIST R ) T
JHERG I 2R ORIV 2 U & 55 9 MR bR PRI 3
A F RS, ST AR R A TR A . e
5 ECIT A B0 v, 3 o AT X B ) R LR
RECRR, PRI AR I FH 2 i 2% M 5 RO 3 2 1 T
(ISR B IS AT AR v A AL B PR Sy 32 A
URRFAE B L E s AR LR VR 2 A, R B X R B LR FE AR
P &5 S, T IR MR IS (B T REME LA RS
222 JREIIS

TRAGFISHIET 20 {40 80 4FAR, 1 L4 (1 AR
H, CEATE B TR E R S M RE S . 2=
TSR R LUK )5 . K (08 B 45 R REmd, 7 1
A ZR U AR € 7 B A A A 0, 43T 28 U A IR €8, 56
e 8] S hE . KO BRE 325 T A B B = 75435
Wi FEEANTE RN 5E 215 B, BT K6
RGEHE, 0 EE ST K R B I T4 A
W PR A A DN A TR R ST 43, K T 2
TS (02—, B T T ARYE B A0 a4k
Fiar TN A T IR B o B TN A AR A
SEIRABTAR 0, T SR AT JAR AR PO 5 GM(1,1) 45
RPN IR BT T PR A R s e ff B2
] ) SRR B, B T O B R AR R R 2
[ A B R R B

FERES FUINT2E H T00I v, 8 FH A 2 1 R 0 S B
SYHT, B RES AL FEANTE A5 SRR B E o, 5 Bh i
IR | PEAG AU AR S, SRR He SR AT
SCHR[281%F 2 TN Y 3 AR AR S. Ak, T Ky 34T K
SR, B 45T hmxd 455 FU o H i K (2
SEERBE AU, HFFT 4 I R, 8 NS b K 7E
T OG5 T 2 HE 14 B 60 ST 18 e i, PRI vl £
SR SERAT X 2 H O A AR b o SCRR[2910 FH R 56
A3 M 7 B R 5 - T 1L\ 55 T 38 2 H % i) X e
R, WL TR | 2R AR 800 2R AL
IR A AL S 15 AR FR R /bT Hh HUSR 1 L FUT
JECHR A 3 B AR 43 2 PR JE A AL i IX 2 1 A T 3

LA EFE R . SCHR[301A0HS 0 000 28 i fE e 14, >R
FHR A CER S B 5 s, AL G CRICRI SR E L 343 2 I8
R R PU & i 4 7 DR AR T L T SR S
FUIUTSE Y Y SRR R 2%, A0 A RO S B L R M R A
FUIT R 7 A B RS R SRR B2, B L T
SRz h i . A8 T PCA, K& BT A S
PERETIFE bR, AT MRV T 9 o SR, K 8 OCHK 73 A
A — L FRA, Q0T O i s o AL SR A ey, R Gk
JE PR A e PR T 2 Y R I AR AR, DL R
I 53 AT FIOCIRAE BT — € 1 Jmy PR o
223 ZHEEH

BT THLA ) ke A AR
SO, SEEAEOLT, 32 B8 AT AR AL T R A
T A5 ., A B TR T G b A HE i Hh A s =R
o BB RS BRI LE SRPLE,
M B33 INZ A BE T o BILAR =7 ) S IR e v o 1Y) Ll
T SR STy R T TR 2] o AR S L 5
HP PN 458, AH bE T AR RO, A A 5 B
PAEw A, I BAEF ORI, T fabn i 8 2%,
ARG AT TR A 2 SRR /D 0, SCHER31]
FEAZ FE 13 A3 AT RIS o 28 0 2% B T % M 55 B B 2
CE PR, el B 20 20, FEALE O 12 AR
YERIIGAEA, T 8 2 H THRIANINE, 5250 i K iR
Z/INT 6%, FEABRE 20 241, 10 24 (FEZEHAJL
) FHOCBE T AR bR S S I AYER R, AL R TR A
AL, ARXEFE /2 A R R S B Y S A NTE R &R

TEGETH o3 M, IR 2098 35 B0 T Ab F i e 5k
PRSI R, P2 T 2R A R I R 7 . RU-
BIN %5 2 ) 1) 2 B I 4b (Multiple Imputation, MI) 77
PR H b —Fh, MI iR R 28 3 A0 R, anikl 7
J7R o B G, ARG B AN — 2 AT RE U AE, AE
I A AN 8 HUC, B — R B 2 A
FHX 58 B AR BT e o0 A 5, 8 A AR
BAGAE R I, 77 A e fm SEAMIEE R . 7RG B R
ety an 5 RS fk )y b, ZEIEAMET AL T 3

18R —Xu=. . " —2-=6,4
243 #r o 0 - 0
345 3

X\=

o ® - @ ...
e @ A A
o 0 - ® _1._>Xr\2: H : —2—0, (722 —3 é, &
Do ; © 0
® o - :
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e A A
| =200,
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Fig.7 Multiple imputation
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T A R 5 R AR 9 D7, 43 i) s [ A F0 0 7 ek | A )
MRS R P 1 S ST (Markov Chain Monte
Carlo, MCMC). g hal FH A H B8, 28478 2018
AERHTPE R MI Bk F T OB A B, 4 v 1
SRR H AR Ay fb e

2 7 0, X WA m ABRME, 0,180, 95 m A
NMEIS G, 0o’ MR ISR B R
BN A E AN — 2 T REAY A, A= LA TR Y
Bdl s HR, B TR Y S AR R TR S8 B i 4R
MG I EAT G 30T R SRR TR AN
LRI AT, 7 A A e EAMAE BT

FESCHR[32], 225 A B4R 62 2 s,
35 AR AN B, MHAR 27 HBARAFE R S 4 b
B, ZEFAR B 22 B IR, B AT AL aR A ) Bk
YIRS BOEE, 35 TNz ettt 28I
A0 7V B A B AL T At %) Ak TR T S AR o 1R 22 A
T, AT — A AR 7 ik, e ST o R A 1R
B, A A 58 B B A, Db %o ik 2 40 ) D AL
ISR HERR 1 73 T R

SCHR[3317E 2 & W55 1 BE a1 48 10 8 22 47 b
(Multiple Imputation, MI) FIFEHLAARIE KD H] T4
BRRSHL, DR AREH, RITBIRANTE R, T
IGRAEAIG I, B FUITr o€ Hh S Rl iy A vt
PE1RT o SCHR[3AVE X Tl I A5 AN 5 5 mlg o I A5 s 2k
B[] 8, 2R ] missForest 5.3 XA A B 251 7 02
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SECRN o MIBCRRMBR H5 AR, 350 a] T A S SO0
IR, 22 FE BUAMIL TG 200 I — 2 qlist, Bl an sk AL
AR B FISE TY F) TE B 1, 5 AR B A 0 kAT B
A REFEFIIEAG . AN T BE Y K SR AE 2 203 2 T
FRERSE | T NLERERYIED AR A
M TURT I M B0, A T RE TV R 4, B e
fifp DRI TR 55 R MU A L, 50 FUI ¢ o
MR bR N R — L AL, fEXHEERE D, EF N,
TP T AR FULITr 2R H F0, e dh Ptk By
T B SRR S ) D 1) I 2 AR AT RE S SRE I R de it 5
A AT AR R

3 ATRUEBMNBNRFZIEEX

20 LR B THAHLAY R, X AT IR a5
WfERLER S~ , T2y e A AR A= H
PG, ML IO R B, R T M 25
ESIUE /i

1E 20 22 90 AFAURITR, Ml ik — sk
KRS, 254 DRI | SCRFmIRL, SRy~ Fis
RPN 22 I 28 S5 7 i — i e o R 21 1
@, HEREE TP RERY W E VED, Pl v S Wt —
S, FEVE 22 SURARAT B, L E A HE S S
FUIr R I PEMAETE o Geit Y SCEk e, F TS R
B A S A N A2 R4 | SRR AL, AR ER
IR, BB SRR RIS, DI RIRE SR L K
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Fig.8 Frequency of algorithm usage and indicator distribution in prediction
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FTHE5 B ol i Bk A 2, & 8 R
) 2 (o AR AR X 22 () 22 BLbL g 2 2], o, (8] 8(a)
FE T R T AERE S B g o v R A AL AR 2 R
LR DL, [ 8(b) /R BYJEIES BLAT S H
W e B R A R AR, 1 8(c) 2 f R AR A 41 Lo
K] 8 H, TCIB S A S 2 SCSCHR, P28 I 28 1 S 4F
] 2 ML (o FH R 000 R X S 2 e 22 1Y, o e A3 )
35.3% F1 21.6%; FURI& RIS M A 51 o3 A, T T
I EEIR
3.1 ANIHEME

NTHZ M4 (Artificial Neural Network, ANN)P*!
PNl g B AR O A 2w ) R S SR L
Y., ANN 50 KA B AaEsE AE s &2
S &Ry R NG Y/ NI V= DS SN S s A e o
FBh), SR G 45 G B A AR = S M T B 2
KENHFLEDIRERY N T 2% R GE, &l KE AN T2
I (BUFR AT AL L, a9 o 2 ] 1) e AR G
AT B AR AL . 22107 50 ZAE L&, N T #
2 W 25 B 2o 25 B — R LD, 2 iy 45 BP
i A TN e A R T N BN LY N B o
2% TREEAS S M4 | T LIl 2 R 4% | A
N 25 o 25 0 LU 20T, TS R s 7
N8 o 22 X 248 SR L 3% 2.

FEE 5 U5 H T v, R TR] N T A 2 X 45 1)
FHARERANE 9 Bz o b T 5 RO o th Fil, Jz ) 4%
# (Back Propagation, BP) A -t 28 X 4% i H e M)
2, AR SO BRI & HEIA R 61.19%, HURJEBOM
PREEILE | A2 ) A28 I 45 DL ST 71 I I 4%
BP #2225 F 20 20 80 AU ok 2, IF H HR 22
BAEM L TR 536 . BP N 4% BEA# /T 2 40
A Z B SR I G R, AN BB A U BN
IR RN IR o B BT o 7 2 ok o ot 8 0 288 B A AR
R 27 T DN, A Do e 28 ] (RIS ek 158 2 1) Y
TERERSCH ., BP M2 ML S5FNIE 9(b) s .

BP X481 B A 254 60 5 4 A2 L BeO 2 A
=, B )Z 0 R R R AR 5538 m . K9 X,
ARZE 2K B, A0 SCHR[3 71K BP T 5 1R 5,
PEZ PO & 1 PO ) R R ] R AL K BT
R BEAE R P AT X; 15 B A% 2 A A BRI
BeUOZ R th 2 () R2EAT . wy A, BUE T Y
B, nyy ny B ng S AR R H T R 4 A
Uy T RiE (I

Y, = fz [fl (XbW])WZ] %)
Horr, fi R0 L3805 REL . 76 BP MR/ 2&h, f il

fofrcH TS PR3 Sigmoid Al tanh, H 1) /2
B ARt 2 e . AR RO g
AALEE R, BP #2825 ()1 25 b AR 8 0 R IR A5 4 L 1%
ZETFR IRZEM AL L AR T 8T 4 AR 4Ll .

) A% 49 < R 28 HH A 48 A Bt A S i A, 3 3 i
ARG AR TC D, AR R — 2 1 B
— AT, TR A S BOE D RenY i, Ot
DL A, G126 2N — AN BRI AT,

R ZETHEAL: 0 X 48 () 4 AT B SR 2 1 4 HT
TRBNAHN R 2ZE(H . — R I iR 2 E iR 25 B
R

B AL R FHBE LRI, D 2% 1 R S )
&, RIS EITI R ZERRE . B, XA
P2 T, THE L AR T 50 A BR BE, SR 5 R A B2
B BIRTZ M ZIT.

A T SR FRE B T B AR 0 g — AN HA
HEATHORT, IR B/ MEIRZERT H Y

XPHT I ALHE | R 2ZE T R A4 DL R B
(20 BRIEAT 22 G AR, H R IR BN IR BOK, ik
R B Z 80R 2/ N TROEE . BP &M% AN
FERY E IE PR R SRS RE T, fRe A i
B A A AL, 385 WA R B FE AR 2 (8] () 5 24 A%
UL KA A L sh A8k . 7E 20 2o st A8 2
RCHE BP i 28 0 2 T fif i 5 BG IT 2 Tn) R, S
BR[3817E 1997 4FFFHALB AR L BUZJEHE | FUIYTI 4
TR E R BC T A WA i B A5 e A T % N T R
25 UM AY s A1 %55 LI 9 075 A WL AT 2 S84
SEM PR 285 28 tH S5 F =2 0] 0 DGR AR AN M | B0 46
(IR, SCAR[39]4HE 2% TR BP 125 [ 254 %) 22 1 Tl
ik, I R R | AR RS BB E R
MRS 2 e () A EE R 5 . BP R 2% IR U2 250, 1
RUECH | SR RN 220K S5 SRR 0 R A
SN o SCHR[401 R B2 i TN A~ 45 5 FL I 28 Hh A fEs B
PEME R A UERA TS, 7652 ) BP A2 W25 ) S mt |, 32
TG A AR K BP AR 7R ]
ST FU o th S 80ek A T R E T . BT
PRI L A 1 T 1 AR B b B 3 DA S TR 5 A
o3 o MeAh, FEMES FOIT o h Tl v, BP P28 I 28 i
FEAE I A AR LA I R, 5 2 T S 51k, W)
Ao i T EE AR N SR o, 4 SRR B ()32 AL g ) RN i
RS B o SCHR[631 M i BP W 25 YA S50 i 12 L) R HE
Jar AR/ IME S 5 B S [ R, B8 — B3 T e g it A%
B (Immune Genetic Algorithm, IGA) # BP % 2% RfI
FIH IGA SEBIXT BP 48 B Ak, 1200 28 45 T b i e
TS (Genetic Algorithm, GA) A7 7E A 2R AL
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Table 2 Coal and gas outburst prediction based on neural networks

SCik FER FEBRE SCiik FEA: LA ]
B BP NN i06. i08. 09, i15. il6 ZHANGZ4 BP NN {02, i09. i12. il5
7 A 43 HEBINN i02. i07. il1. i13 VR ) BP NN 01, {02, 107, i09. il1. il3. il9
¥ 41 g 4el40) BP NN i02. i07. i09. il8. il9 i 75 0] RBE NN 08, i23. 24, 25
E 5 e HHIBP i15. i18. il9 i HeglT7] HIENN 08 i25
Ee iy BP NN 102, 107, 109, i10. i23. i24 it 7 25178 BP NN 02, i07. 09, il8. i19
BE Y e 4] BP NN {02, i07. ill. il3 X ] BP NN i01. i02. i07. i09. ill. il3. il9
AE Y pE 44 BP NN i02, i07. 09, il8 ApNEAEBT Py NN i02. i07. i09. il8. il9
=l BP NN 102, i08. 09, il6. i18. il9 el BP NN 01, {02, 03, il9. i21. i22. i25
s L] BP NN i01. {02, i07. i09. ill. il3 Eeberieay) BP NN i01. 02, i07. i09. il2. i13. i18. i19
SRR BOMIBP NN i15. i18. il9 W e (8] BP NN i02. i07. i09. il8. il9
I 25 i 2 48) BP NN 02, i07. 109, il8. i19 W5 [ MESANN 106, i08. 09, i25
ik 37 2] BP NN i02. 07, ill. il3 AL S 48] BP NN 01, i02. i07. i09. i13. il8. il9
/N 50500 BP NN 23, 24 F et ] 2:(86) BP NN i01. i02. i07. i09. ill. il3. il9
BRREEDT RN BP 02, i07. 109, il8. i19 Tk 4T BP NN 01, {02, 107, i09. il1. il3. il9
P i05. i07. i08. i09. ill. s8]
T A BP NN . . RITAF RBF NN i01, 02, i07, 09, i12, il3, il8, il9
il4. 115, i18, il19
YA i 2] BP NN {05, i07. i08. i09. ill. {18, i19 || GUANZ RBF NN 01, 02, i03. i15. il9, i21. i22
Wb msERNE i02. i07. 109, il8. i19 ZHANGZ0 BP NN 02, i07. 09, il8. i19
403 BP NN i02. i07. i09. i10. i23. i24 KONG! BP NN i01. i02. 07, i09
Phatgslol BP NN 01, 102, i07. 109, il1. i13. i19 || EFHFEELY  ShAsuINN i02. i07. i09. il8. il9
HiRrRT) BP NN 01, 102, i07. 09, ill, il3. i19 || fiHl4 Elman NN 01, 102, i09. i19. i22. i23. i24
PR xabl BP NN i02. i07. i09. i18. il9 GUOZ! BEENTE) i01. i02. i06. i07. i09
T A BP NN 01, 102, i07. 109, ill. i13, i19 || FAEfEE0Y NN 102, i07. 109, i18. i19
o0 BP NN 02, i09. i12. il5. i20 GAO%] RBINN 01, 102, i07. i09. il12. il3. il5. il8
2z g7k aglon BP NN 02, il5. il7 [ 24510 BP {02, i07. 09, il0, i18. il9
2 /N gy 445162) BP NN i02. i07. i09. i23. i24 JgEte B T SHIMINN i01, i02, 07, il5. i19. i20
e g 45103 BP NN 02, i1, i17 Rt Elman NN i02. i07. i09. i3, il9
1B B g6 ROBIBP i02. i03. 106, i07. 09, ill IR0 HEZNN i02. i07. i09. il13. il9
X 3 (03] RBF NN i02. i07. 09, iI8. il9 XIE&5] GRNN 03, i07. i09. il1, il4, il5, i18, i19
YOoUZ!6] BP NN 02, i07. 109, il0. i23. i24 o f g 100) BP NN 01, i02. 03, il5. i17. il9. i21. i22
Y ANZET] HEHIBP i02. i03. i06. i07. i09. ill YANZE10T] BP NN i02. i07. i09. {18, il9
HEZ[68] ANN {08, ill. il4. i15. i18. il9, i25 HE!' BP NN 02, i07. il2. {18
(9] i05. 06, i09. 13, il4. il5. e l103] .
ItHaE BP NN e . EETALR BRI NN 01, i02, i07, i09, i1l i13, i19
118, 123, 24, i25
g gy470] BP NN 02, i07. i09. i18. il9 wyZlod BP NN 01, 07, i09. ill. il3. il19
1) S 03] aee 01, 102, 106, i07. 109, il4.
¥R 4Tk At BP NN 06, 08, i09. i25 INEiRE BT TLENN i .
il5., 119, 120, i21
. S ] i01. 06, i07. i09. i13. il5.
PV R 45 BP NN 02, i15. i17. i23. i24 25 AR FINN . . .
119, 121, i25
WA R RINN i02. i07. i09. i18. il9 WANGZL0] BP NN i07. i09. il11. il3. il4. il5. il9

AR MRS LRI RERERER S LAB MM 2 T HA Y A8 0o~ 305 LA Sk
SUPERERT 2 T kst SCHR(87)5H X BP MR MZE /eI TRUEMA AR M SR T A P . 55 2 A2
FCIr 5 T e (R AC B B 18 A AL, R T MAT- BP0 R0 45 A, 75 A B B T s B R A A
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Fig.9 Neural networks in prediction

Bl UL PR A, 5 PUIHT I 1 TS 2 f) 0000 s
AN FH A (152 5080 T3 1 s I LA B G2 154 LAY
LR, SRS FUIr 2% Y AR ME S IR R 0
S5t AP AL 0 e S A A5 b Xl

I, BT 2R 2% AR FUT S AR
2 BIBFIE, V20 008 A 28 0 25 IO 5 BU3BT 58 Hh P g
DT AR, IR TR LI P B
32 ZHEHEEN

5 16 ML (Support Vector Machines, SVM)!'”"!
Je— LI W ) Sk, T 20 42 90 AR BER
H, B — AL AR B K B AR, oA
[l JASE AL BEAT T i1, 0 EPEREIL S . SVM fEAb B
SRR RIRRNE , G i e R AL A B (e R 2610 5 5 i
IEAEA YRR ), BENS 15 2 BAT Bz AL RE 1 19 326
BRERL, IXAHAT SVM XS T4 JUH R AR ) 5000 5 ) 455
TERES FUBT o e v iz fli i (181 10, % 3). SVM
HIGETT27 T BRI R A5 R T UK S, feb) T & TR
HTR A 7 HAT 55

K10 SCafag AL
Fig.10 Support vector machine hyperplane

SCRFIEEALEY 7 FEHLEN A 10 fras . B 10
Z 80 w AR B TR VR 1) B, 280 b T 4R LR,
wh o x+b = OFLHE XN V- 1] A 73 25, X TR nl 70 i
AR AR R, ISP HAAE IR ZAS, T BA K
8 LT 18] B 2 B R - TR H AU — . SVM Y3
SRS 2R Hh SR ] i OB DR, SRR AR 5 ] B 4K
Tok, N—ERRBE L5t X REAT LA Ik “UERCRAE”

SVM )73 SRS R i i DR E Be A5 2R, X 5+
HAEA GBI, BA MR S PR AR AL RE T, X
LA SO TS PUAT S B . SCHR[148156 T —
G328 SVM A E TS AL, B AR 55 FUHT 2 75 HAT
HEk.

ZULE) SVM JE—A T Kk, AT E YR
TSR AL, R AL B2 S SRR, AL
1 77 24 $5 — X £ (One-vs-Rest) fil— X} — (One-vs-
One) S, X #E— L4 SVM TEHE 5 FUIbT 52 ) i
H o SCHR[10913E T 27036 SVM BRBLR IR TR
JE . FUIT IR T | FUHUR EECRD L | A I [ R KO
BRI RE 5 A FEbRAE R i A, AT
RS PO S R HE (ol L /NG | AR RS
FIRHITE ) o

N T EME N S FU R, 2 E R
BOR PR B SR AL TS T . 40 SCRR[125]
SR FH— I ESCHE S5 ] AL NN-SVM J 55 FU
ZE Y SCRR[13 1782 22 J2 e B Sh a4 i/ — 3
SCAF 1) FR ALY B 5 H FINASE Y s SR 137051 % 2451
R RS AN 2 T B AR AR AR, A T R A
SRS 1] B HLEH 5 1Y o SETRNAR T

R FU I 5 S T 2 SR A8/ MR ASTRUBIAE 55, 52
Rl U/ IMEAAE S5 B2 B Y, T SVM
A 3 e R B B A RE 0 IS S, X TR R RS
HEA—E MR, 15 SVM R b FLEA — &
W AN SERPRC I/ AR . KU SVM Tk
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Table 3 Prediction of coal and gas outbursts based on SVM
Sk EEUIERES FEFRME SCHik EEUINE RGN FRBREH
W4l 08] SVM 01, i14. i15. i19. i22 FHREEI) g N eSVM 101, 102, 103, i14. i15. i19. i21
i e 100 SVM 02, i07. i09. {18, i19 X 2130 SVM i05. i06. i09. 13, il5. il8, i23. i24
— - i01. i02. i07. i09. i10. il4. e x i01. 02, i07. i09. i13. il5.
VL HISVM A /NTIRSVM
w7 * il5. i18. 19, i22. i23. i24 A & i17. i18. i19
e i05, 106, i09, 13, il4, il5, L3 01, 102, 03, 07, i09, i3,
FiE /N 3
S i18. i23. 24, i25 o SVM i14. il5. i19. 22
w2 SVM 02, i09. i12. il5. i20 S e 133] SVM i01. i02. i07. i09. ill. il3. il9
WANGZ!13] SVM 02, i09. i12. il5. i20 HS R A0 SVM 01, i02. i07. i09. il6
_ i01. 102, i07. 09,
Wil 1) SVM Q1 il SR SVM 01, i02, i07. 08, i09, il3. il4, iI8
1 V1 v 1
P U e119) JEKSVM 02, i04. 109, il8. i23. i24 JIAZE3s] BIISVM 01, 102, i07. i09. ill. il3. il9
SHiZL!1e] SVM 02, i07. 109, il8. i19 LIu%(136] B/NTFRSVM {01, {02, i07. i09. i13. il5. il9. i25
i SVM 01, i02, i07. i09. ill. {13, il9|| Hmessaei SVM 01, i02. i04. i07. i09. il6
i05. 106, i09. 13, il4, il5. o
# R giLsl SVM T Iy alan SVM i01. 102, i09, il5. i19
i18. i23. i24. 25
_ . i01. 06, i07. i09. i13. il5.
g SVM 01, i02. i07. 109, ill. il3. i19|| WU% SVM
i18. i19. i25
i01. i02. i05. i07. i08. .
LIy%t20 SVM e ZHANG#') SVM i01, 07, 08, 09, il5. i20
109, 118, 119
] 01, 02, 07, 09, .
Je 0] SVM 1L s o LIVZEMT  gh—3kSVM 01, i02. 07, 09, i12, {13, il5, il8
1 V1 v 1
wmEE?)  F/hkSVM 02, i07. 109, il8. i19 LIuZ!S) SVM {05, {06, 109, il3. i15. il8. i23. i24
rel122] N i01. i02. i07. i09. e ella1]
% FISVM T RS SVM 01, 02, i07. 109, i13. i19
1 1 NI |
7 pil 2123 e[ 142 i01, i06. i07. i09. i13. il5,
JH 2 p i1 23) SVM i02. il5. il7 fieE4 N3k SVM A
19, 121, i25
i o i01. i02. i07. i09. il5. 13
TR AE 24 /N"3SVM o ZHUZ143] SVM i01, 02, i07. 09, i13. il9
119, 123, 24
‘ s 01, i02. i07. i08. i09. —
g 125 SVM o sy kil SVM i01. i02. i07. i09. il6
i18., 119, i22
] R e L126] SVM 01, {02, i03. ill, i19, 22 || SHAOZ#] SVM i01, i06. i07. {09, i13. il5. il9. i25
At=[127 e[ 146 i01, 02, i07. i08. i09. 13,
75 3t 4 127] SVM 01, i02. i06. i07. 09 WANGZ!140] SVM B
il5. 118, i20. i25
Y ANZ [128] SVM 02, 09, i12. il5. i20 LIANGZ[147] SVM 02, i07. i09. il3. i19

REAE S, (R HABAFTE R I, X S 50 pR B0k B 4
JE, EEXTILIR L, 2 E A TR T SVM S8k
fo G, SCER[130TE BUSIEAS Ak | b S F i | 0 1 [
PEREL BE FOTR A SE 10 MRFERE AR ST SVM
5 W PN AS Y, e DR R Ak SVM Y C
g X 258, SCHR[341 A RYE SVM Bk REZ S5
B K 1), A R RO AR BT SVM #4725
B, SCHR[1491F A 1 WU 5 BT 28 A e 4
SVM [R5 R, 3B 0.9 VB K £ o5 BAR B 2R, 1k
FI 14 AYNZREEA AN 8 20 T BE AR IRAS PR 25 1, #
KRR Hi sl T SVM BRI A PG i Ktk . e
O b B A T SVM 254k, T LSz B
gy ), {H SR, TR It
AU k2 2 KU o

SVM HYBRIEANAE FH Dtk S A 1] o, AN TR
MYNGREE, 45 SVM AL IR/ INREA A% o [n] i i HA 35
MR RA . 5 2R, SVM RYTERESZ RIS 4L
TEFEAYSEIA , TE/NREAE o] [, S0 e X A
YRR % 52 S R Rk, S PSR s i v, AR SR
WORHIE 1 22 T SO, R SR A S R
SVM 5t 28 AN 1887 B4 5080 B A 0 1 i 1) DU
XAE—E PRI 2976 5T SVM 5 FUI o€t 1 1
Y.

33 HREREIM

1z B2 2 HLU Y Extreme Learning Machine, ELM)
SRR TEHL TR % HUANG 58482 i HL A% 2 2 B
ELM 1k 52 A1 ot o 28 P 25 A R, HAEACRRAE 2 Bl
PR e A A B 22 1) e A R i 2, Bt ) R
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fife 7 B TR 2 B . XA RS
fige vl LA o A G D gt SR R AR 3, ELM AN 22054
AP A I i, Tl e — U 35 A5 2 4 HE )= 1AL
o P, RS T 5 B0, ELM B B I 25

AP SR & . (HAH EE T SVM BN T4 22 25, A
PR 272 S ML A 52 13 Bsf ) ARG A6, ELML 7R 5 FUIT 28
ToOI B B S AE X D, O T ELM Y 28 HY 15 I SCik
W3k 4,

F4 ETELMWESEHRH BN
Table 4 Coal and gas outburst prediction based on ELM

SCik ] FEEEL FEFRMEH ik ] I S = RS FERRE
WEREDY 2015 BLM 07. 109, ill. il7. il8. i19. 25 || WEHE 20020 ELM i01. i02. i07. i09. il6
15 eli6o i01. i02. 07. i09. ill.
XIN%52D 5015 ELM i02. 107, i09. i10 YANGZ!T 5000 ELM o
12, 113, il5. i19
FHESEIST 2016 ELM 01 102106, 107109 MIAO%EUST 5020 ELM 01, 02, 07, i09. i16
i13. il4, i15. 18, i19
o e154] i01. i02. i05. i07. i09. 162 S
L e 2019 ELM S o B4R A 2023 KELM i01, 02, i07, 09, i13, i19
ill, 113, il18, il9
REHEIST 5000 ELM 01, 102, 03, i15. i19, 21, i22 || HBEAZENS) 2003 ELM i03. i07. i09. il1. i14. i15. il8. il9
—— 01, i02. 07, i09. i13. SyS—r. 01, i06. 107. i09. i13.
W ’ IR ALl
2020 KELM i18. i19. i22. 25 i 2023 ELM i15. i18. i19. 25
LIUZST 5000 DELM 02, 07, i08, i09. i15, i20 SHAOZS] 5003 KELM i01. i02. i07. 09, il6
ERIr® 9000 ErM 01, i02. i03. i07. {09, il3. il8. il9

4, T ELM B85 FC 22 b il i o8 A
X, AR TEIT 3 a K. RAE ELM A 5 F 124
M EMZ AR, (BRI T R A R
HUANG 25154548 ] SVM FFAE B S 4 AR BGIE ELM,
e K kernel ELM(KELM)!" ) B R U4k T ELM 14
ML HIAA S SVM A2 2 MR . R R
JHHIET .

SBARENT ={(Xe. YO X €R, Y. R, FH [ 4>
BEUZ T 05 B PR A () Y ELM BREY JF B ] R Ay

1
f(xej) = Zﬂejg (Wejxej + bej)

J=1

(6)

o we, W AN AR 2T 5 B Z B 2 T Y AU
B FE j A B AR G0 S a2 18] B AU be, M
T

KELM A% A JZ 2 Be 208 i % R B S i 3K
i, WD BENLAUE XS ELM PERERYZ I, ELEGJZ Apf2
TCRCFIG B e AN BOE MILAL . ELM A8 3 A 22 4
(1) BP 1 22 00 28 7555 FUIT 5 ) P v PR, {HL ELM
Xt TR F AR P R S AR R SRR, X RT BE B
ISR RATRE Ul B AR, R = 400
Kok e BB U, H ELM MPEREZ B2 M &
JLRE Z /D IR, 5 BT e B s IR A 2 On RO E A 2,
W22 ERE . B0 LE R, SCHR1535R H] Memetic
BEIERT ELM TRNASE T S Bt AT AL, B o A T
PR sk G ELM g ABUE RIS = O 22 BEDLE (19

S, X ELM BRI S HGHA TRk, A4 ELM AT
REFIIZ ALAE 7, FH RSB - o 2% SR 154195 17158 1601
T BB, T S ELRT, BZ ket Ul
[7) 85

SRR TN P - NP ATSE SN 27 N
fon 4k () 31, KELM A A2 48 ELM (A 37 T HAE 4k
PEFAFLAE S o, REAE A0 B A ZR A AL b a5, JF L
KELM /38R {45 7 ELM BB I 2558 B A i 32
fhfie 1. SCHR[15618% ) KELM R4 4 5 FL T 5 H XL
6 5 350 2 IR 38 4L B ) AR A 1 o 2 TR AR IR £ M O R
T T, AR AR i A B T AR R v A R R
] 97.31%. KELM 7E ELM [W3EaE Fo5| AR+ 15, %
B0 IS A 25 [ R S 1) — A i 2 () AR 28 [, {FLAZ R
5 I AR B R A A S50, KELM fE R FH g 2
T A SRR B RIS A
34 BESH

BRI TR FT 43S [0 I 7] 5 ) — b S A7
PO ) s R LA A S RIS e ) — R
J5 8%, BRSO AR T 43 BCE A AR BURRIE 9 2H 5%
o RIS E A B KA AL P R AR AP RN A /M 4]
] ) 22 SR B EREAR Z R R . BB WA M
B Bk, A B R ) R, RS L B
AR A B SU) Z N . RS FO g
T 2 KT AR | IR (0 R SRR 245
RAF L, SR 5.

FEMRESS P2 H T00I0 Hh, R R ARG T 32 1 SRR
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Table 5 Prediction of coal and gas outburst based on clustering
SCik FEH D FEPRE SCiik FEE FebrfE
ST BRSO 03, 109 2 s l180] FCM i02. i07. 109, i13
i g i 172) WEE S 01, i02. 107, i09. i18. il9 e 23] B% 02, 909, i12. il5, 20
gl KIEARE% i07. i15. i18. i24 PRl B i07. i08. {09, il5. i19. i25
e i1 74) FCM 102, i07, 09, 10, i23. 24 B3 4 al182) FCM i02. i07. i09. i19
o k3 [ 175] e fc[183] e i02, 103, i07. i08. i09.
TGRS L2 07, i09. i25 LIANGZ LS U,
17, 118, 119, i25
it s el 76) peeS i01. 02, i07. i09. il5. {19, i23. i24 LIU%g184 KNN i02. i07. 08. i09. il5. i20
para A i03. i06. 25, i26 YUzElss] A i01. i02. i06. i07. i09
. . ) i01, i02, 06, i07. i09, il3, .
FBR e8] BEGE =3 T e LIuZg8e] KNN i01, i02, i07. i08. i09. {15, i20
il4. i15. i18. i19. i25
- . ) i i01, 102, i07. i09. i3, il4,
[A]-Z KIERH {02, i07. 09, i18. il9 i ST kNN 1s s il
1 v 1 v 1

& FCM Fl K JT48 ., FCM 8y 23 3 %) 43 A L)
X A2, G SEUARUSE 2 0 ke Ja 2 380 () 2 1) S AR AR,
AN Z R A BB fie/)N . FCM B8 JE TR0 e
HP R SEJE B R, I SRS B sRBCEREAR 2 . Bk
HA B el s S50 B2, H S
ATHAFAE—SE X LA (0 X, W25 5 B A S s 88 o5
SCHR[1801%H Xt FCM LA MR 55 FU 28 Hh ik
JEE ARG B 1 T) B, 8 it AR A AR K S A5 i)
URIEMRSS FCM, B T i RIS O IR E A Y
T A WS R BRI N SCHR[182]4% Hh 1 —Fh T
N T A BERE A FCM BIRRARLE A 10 bt
AR A k. FESSHHI b, FCM RIS 1E
T EREMS AL BRFEA I BIRIPE , B REA LB A,
IR AR AR B . 5 ELM kA L,
FCM Rt Ay —2e i Z A B ——RRFEAERIK
SR AR TR E B, BB
BRI I, TR 44 B AR EON K. Ak,
FCM SR M 7 1 5 (UK, G0 SR M sl S5
FETE, FIRE X R R KM, S8 TR
TEMRALER

FCM R AfE 7 £ 5, K it 4B 55 1 (K-Nearest
Neighbor, KNN) ¥ H: DURRAFE (B I & 19 22 55 61750
X, ERAEVGRE T IR AR ST, FA
DURCEE, T As 2 850 R RRIE 5 I ZRAR rhod g 9
TESEAT A AT, % Eb s BB 22 1 K550 28001, e
o ARARL A T K AN ECHE R Ir 5 43 25 . M LT FCM,
KNN B K B S A T G R Z2 08 iR A 4 ) 3
SRR, AT TR E 2. STHR[173]0 T ARIE T
IMERA M, R HALG IR ISHM, 8 HE57 24> KNN R
JEAN o SCHR 18414 H T —Fh &b & B 32 T Dk SR B

(Gradient Boosting Decision Tree, GBDT) il KNN [1
ORI A TN AR FU A, 5 R R S LA
R B TR S B AR LT 98 ) UM U AR L, 1207
PAERFIE R AP B E AR AR . R, KNN
ST TN T 500 A AR R SR 0 AN RN 155 L T
REFRIAE, T EEAIE M K IR B8 B i ki TR

R A SR T B AT LR B B e s
() N FE S5 A =, 5 B i B R A U7 0, &
TLUR BT BE 2] Ba 28 il s o AR
M, BRI M A7 — S PR AR, QN353 iy SRS 0E
DR B vk A BN S LSS . RIS
FUTOE HE T v, B 22 2 2 SR ) T e 28 0 24 B 5
FemRm L . B AN RSB S TR
ER T ey, R S 0 R A TE e 2 T L
3.5 REH

P R (Decision Tree, DT)!™8 % KLF 20
22 60 AEACHHR Y, RSB B VL AR A 5 LA 5 Hh T
S AR S B A T AL B A X B e Pk
SBT3 AT, AU B2l FH LU it A 7 732
A e ILEGIRFEM A A ID3, C4.5 Figp2lnl g
#J (Classification and Regression Tree, CART)“SQ], 2
5 FC AT 2 HE TN v ) DR SRR SR SCRR LR 6.

Fo6 ETDTHESHATRETNM
Table 6 Outburst prediction based on DT

ik Ny FEAEE FEFRBEH
Al 01 D3 i05. i06. il8
PEFE 5015 CART 02, i07. i09. il3. il9

M 6 R AI, AR DRSS T2 H B A SCHR AN
Z, (AVFZPERE RS O S B > 558 ] CART



552 4]

B AEAE FETHLARSE S AN TUI R PO T o v A e 679

REgE ML I, FEREE A 2R A S AR

CART 2RI 3L R — X, 32 B R HRE Bk
e U AR BRI B RG2S R £
AR (T BT 28 AR . BE R HR B B/ ME SR 2
SR, AR5 W i 3L e 48 BGR BUR PLRR IR A, S
JRRRBIHA AR

K
Gmum:1—25p§ (7)
k=1

Forb p BEAR TR T4 K RRER . DRSRAR L JE 4R
B A IR T 708, BRBARTE IR A1) 73 505
Bl D, SR e WRHE o 2 TR, 7R N
Dq Ml Dog, SERAFASESRL JE IR BT AT

IDeil . . Dal

—0G + ——Gini 8
D M p e ®

BHE AR rhOs N A AR AT R T AT R e
GYHBI MW I, S TR BRI AR S R )
JeFR B/ N T R

TESE S LI 5 M 3000 v, DS R Bk B EDUE ]
firR MR (AR A5, RE S AL B[ 7Y A 20 B 8o, L
X S B (BRI S (E E AT e Ay e o BRI, R
TRES FOIT o T, PR S 75 T ak HUAB O AL
s 0 AR AL R, R BIRAEAN PRI Ze B R AR B, H
SR BT CANBEALARAR . 16 B2 ST 45 ) Bt
HARVGE YRR TERE
3.6 £MFE3

e pliap I, SR AN B I B —A
TR ) 2F AR, R AU S A 22 ) AR
TGS, 7= A — AR . SRR R . H AT, 59
2% 2] HLLL Bagging Fil Boosting Wi Ff 77 2U4E 1% . Bag-
ging Ji OB 555 WA T, 45 555 T HL I
SAEAAG AR [RIAUEL, BT AR e 2 R 2 A 555 2T AL
B Y ), AR KB LA FEHLAR M (Random Forest,
RF); Boosting J5 38 1 AL 25— &R 51 55 2% 2 4%,
YIRS A (A, (A5 I 22 1Y) 27 28 5 fin G
BEHT 27~ 25 53 AR DR R AR, DA T4 4 A Tl e
fig, LB RBE A AdaBoost,

AH e TR SRR, 7R85 FL o b Juiil v, 42 iy
e E A A A 2 T AL, A AR
U ) T AE B FNZ AGRE T o AHLEET SVML, MR
2RI B~ S WLAF Bk, SRS >0 ik mT LA /b 3 40
G, L G55 220 2 A, AR BRI T A
S (AN BRI B G S5 B — 8 B Bk, X SRR
AR R > A5 BT 2 T b B TR A pE#

(}iniDC A =

FT R T BB FU &t T SR SRR ULk 7

®7 ETERFEINES TR HHN

Table 7 Outburst prediction based on ensemble learning

SCHik GEO) B ERrS TERIL]

WANGHHST 9013 geEebEAEm2%S) 102, 009, il4. {18, i19

[ S T3 Adaboost i02. 107, 109, {18, i19
ZHENGZ: 1951 2023 XGBoost 01, i02, i04.
i07. 109, 16
BEHZI 2014 RF i01, i02. 03, il5.
i19. i21, i22
RUZTT 200 RF 01, 102, i07. i09. il6
AT 2002 RF i01, {02, i07. i09. il6

AdaBoost! & —F [ 38 )i 1458 (Adaptive Boost-
ing, AdaBoost) £, & ORI o A ik B T
H iy, BRI M EATE IS 4 AL E R A
AR, VAR R AR 3 S 18 22 38, SR e A [l i
AHIRUH
B AL 7% Ak (Random Forest, RF) & 21 {2047
i Leo Breiman %542 H (1) —Ff 28 ML A HIL#S 27 2 B0k,
Ph CART 8570 Bt i — AT SR IR, B —
PR ST FRE, AR A5 AR — B0 A i B
TESEBRR I, NGRS 245 A T mERAE LA S B 53
KAR, B— Do LR AR, Bt R AR
ORI BOERPEE R, FALHIANE 11 PR,

[ g |

’ Boostrap resampling ‘

11 BEYLERAARYL SR

Fig.11 Random forest decision mechanism

Bagging F kA 2400 5402, it FEAIGR
FEN 7 25 KRR A . BE b, SN 7 258
M2, SLIEE AR 22 T 2241/, BEHLARARIR 108
1 Bagging IhAE AL, BALYIZRRT, 454~ 55 50211
I RECE 2 IR ZR R A Tl A BEATLRAE o i AL
i A B LA A B B0 Pt 24 T e 7, Ik
FIBERY B 7 25/, iz ALRE T . BLAb, AR Sk s Fif
PLARARIEZATI IR AT LA R A BE , X T ASE A 8 4
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K, BEMLARARRT LIS 22 o X et S i 75 Bl ML AR
MARIE G FH T8 5 FO 2 LB F

I 2 a SR I 2 PR RE B A 0 S O B 1k,
NGBoost, XGBoost 1 LightGBM %5, 33 #6584 1% [F] £
XoF S B AN BURS, TR BE R . 910, XGBoost &
— AN B AILAS 2 > Sk, R T R AT AR
HAEWZME . EHTESCER[195]H 0 7 iids b B0
B TR) L, s XGBoost FH T4 -5 FU il 28 s iy, B+
XGBoost )R] i B, 28 it 2 BT 17 )2 I [ R A
FLTE T . BL Y MR 2. FUi & k. FLIR 3SR R
TR B BE 6 > 48 b 75 5 BL T 28 S S o Y BT

£ N AF 2T X iR Bt AN BURR, I HLHA AR 4 7l
NP BRI AT R R o A LU TP 25 D 2% S A ] FE AL,
JSUAE T A A ) I 5 B I % LR T A9 5 %) SR

AERE A AR ZEF A AR AR S FOIT 5 0 Jt i o, £
B WG 2 G
3.7 FHISH

F 5537 (Discriminant Analysis) & —Fh 4t i1
25k, BTERBIREE A HLIX 43 2 N E A T X
FM RS i, JE T 4R R 3 24T 55 . FDN AT Y
H A 8 Ao e KA A S NS i () 22 5 L e/ MR b
BN 25 5, SRR BN — DA 7 I B, N
[ R AR AT BB A IF o FN o B a] 432k 3 28 3%
7/ (Fisher Discriminant) 512 D145 (Bayes
Discriminant) IR g 34 5120 RS FUT o
X3 AT N, MG SCERGE T L 8. 3R 8 Hh,
FHT B g H #0055 3 B A 16 4 SCHR, Fisher F)
S DU Hir 0 ) R B 0 04 SCHERER A R 7. 5 RN
4 %, TSR ZEAR AR LTS T 8 i H

R 8 ETHHSHEES FHTR H T

Table 8 Outburst prediction based on discriminance analysis

SCHik FER EEg L SCHik FEAL Bt
BARPS Fisher 102, i07. i09. i13. il9 Rlige Tt pingy 02, i07. 09, il3. il9
R s pigher 102, i07. i09. i13. i19 BFER piny 02, i07. 09, il8. il9
Bl pisher i06. i08. ill. i25. i26 2R i o1, §02. i07. 109, i11. i13. il4. i19
CHENZP  pier i06, 08, ill, i25 CHENZPM ot i01. i06. i07. i25. i26
TR pigher 01, 102, i06. i07. 109, i12. i15. i18. i25 || X4 gEsmH] 05, i07. 08, i09, il1. i18. il9
Banssll pigher 01, 102, i07. i09. i13. il4. il15. {18, i19 || FME&RIOT  pEase) i02. 107, i09. 13, i19
KA piher {02, i07. i09. i13. i19 PIEEAERT] i ) 08, i25. i26
WANGHLT 47 i02. i07. i09. i13. il9 XUPEZERS gEs ) 01, i03. i07. 08, i09. ill. il8. i25

e /AT (Fisher Discriminant Analysis, FDA)
JETE 1936 4 4E 1125 Ronald A. Fisher 45 i) —7F
FMN 53 HrITE . Fisher FHI 43 #r0 HAn 2403 — 4%
S2 5 ], e KA [R50 Z 6] i 7 22, R B/ [R)
— RN T5 25, NI AR IS AR A A5 T 4 1l
25 . Fisher F 51 73 A 6 S (B AH G R, T FLAE = 4
AR ARA R I, ZEFT ST 2 H Bl Fish-
er S AT BLR e 2 10 0 e 4505 g P
{4 Fisher $ 31 50 B 1 & JUBL (LA™ A 5 FUBT 58 1
T 5T, 76 4 5 L S S O e 9 100% i
WM, BEHSEZEPELT Fisher 20T EE s FI IR, LS
HNESPEACIED (1Y) 28 LHEARAE e AT AR 5 U o€
GRS M A 5, T BP T LA, 45 R R
Fisher J B HAG B = B AER R RTS8 . 22424
ROV IF 5T 485 Al W/ Fisher—iZ 46 ) 5 /i R B
FEVELE . A TE S D U i FH AR X B £, 7E Fish-
er 7P AT LA —BERR T, B X BCE A A AR, L

SRANTRIZE B By UIp 7 26 FE R AR AS:

DT eS8 0 53] e — el T DLW 47 5 3 40 591 g A
J5 i, il T A B AR B Aoy 26 me . BRI IS
ik VRS (VE/NTSE S QDO SUIUN VRS Sl R e s e R
FE LIS i A 200 B J AR, IR e BT ey
Je B MEAS R 2 o DL it S0 S S Ak B MRS A -
WA AR I R R A R, B2 i ] T 5 T
S MAFFT o Bt 36 7 452 Ny 28 Hh UM (1 Bayes
FUFAERL, I IIEIZA R A 35 . CHEN 2521 LT
DU - 340 590 73 Afr A 22 18 BR £ G WF TS LT 5% XL
W T, S P AT R AR R R AR I Y T . 5 Fish-
er F 590 73 By — 4, BE T DU 307 4050 23 B Y 28 L F
GE, VEBAEH TR 098 1 35 50 B £ i) T ) 285
R DL (4 8 1 BN AR 58 A A AE BRI, 45T
1o AR B TR 2, DA SO M R A 1 R R
BOR

#5251 51 43 #7 (Distance Discriminant Analysis,
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DDA) Jt T HEA 2 [a] (9 IR 25 B ok i AT 0 28, 0 8
AEUEA o 0 AN [R] 2800 2 ] 1) 8, i 1 A R 2800
PIREAS B G, T TAS R AR A S 5 5515
%, M SEEA 20 Y . FERE B A 43 H vh K 24k
R FH B 8 A R LR 25 | o A it P 6 0
ME i L IR B A o R S A3 A 2 — R BT A
BT, R aE T/ INREAR B A TG v IE
BRI DL . R PSR 7 3L T PCA-HE
N ) 2 U AR Y ) DSR4 \ ) T AR Y 17 41
Jir G B A A 2 ST RE AT J o8 th U oY o 1 S )
S ATIE T /INEEAR B 24 ST AT 55, SRR 5 FUT 28

ST, ANEASKE AR IR S e R I S . LAk, R
BHN AT A — e R, 51 QAR 22 [a] 8 4
A, ot M S (AR
38 H fi

S5 PSR P — A B PR A 55,
AT BSR4 Fh AR A SR A T 2 T, B T Rk
() 28 ML )3 A P P BIL AR 27 20 303, ARCER DL 37
JEW SR RREEE | IR B IRIEVEAL | KBRS | K¢
AT . 2 M8 4 3R DGR [ AL A5 i FH T 58 1 T
PR T SR AR 5 S0 g A AR AR X /L, DALt
ARSI S S A, SCERGE T UL 9.

®9 HitE®
Table 9 Other algorithms

itk Eistan G| SCHR it
p U2 e i01. i02. i08. 109, ill. il4. i15. il8. il9 Gy a3 i02. i07. i09. i13
3 3k 4512200 08, ill, i25, i26 fi R 4412361 i02. 107, i09. il3
B a2l 01, 102, i09, il4. i15. i19, i22 BEEADT o1, i02, 107, i08. 09, il4, il5, il9, i20, i2l, i25
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