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Weak current phenomenon in stressed coal and its prospective applications in early
warning for coal and rock dynamic disasters
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Abstract: In this study, some loading experiments were conducted on coal specimens using the established weak current
testing system to investigate the effects of weak currents in coals. The response characteristics of weak currents during the
coal deformation process were analyzed, and a quantitative relationship between weak currents and the mechanical behavi-
ors of coal was established. The principles for predicting coal and rock dynamic disasters based on the weak current meth-

od were proposed. Furthermore, drawing upon the results obtained from on-site practical applications, a forward-looking
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assessment of the potential applications of this methodology is presented. The results indicate that the deformation of
loaded coal generates weak currents. The fluctuations in these weak currents exhibit a notable alignment with variations in
stress, with the magnitude closely tied to the coal mechanical characteristics like stress, strain, and strain rate. Notably, in
the compaction and plastic deformation stages, the weak current rises in tandem with the strain rate, while in the elastic de-
formation stage, the weak current exhibits a linear increase in correlation with stress and strain. Under perturbation load-
ing, the coal produces some periodic weak currents, referred to as the pulsating direct current (PDC). And the variations in
the PDC align with stress changes. Furthermore, the weak current demonstrates a reliable precursor response to coal dam-
age, with some unusual fluctuations observed during the accelerated increase process (plastic deformation stage) serving as
the precursor indicators for the progressive failure of coal. Conversely, the pulse-like fluctuations observed during the at-
tenuation process can be regarded as the precursor features for the coal's creep failure. The phenomenon of weak currents
in stressed coal serves as a pivotal foundation for conducting weak current measurements in mines. The intimate correla-
tion between weak currents and the mechanical behaviors of coal underscores a crucial prerequisite for employing the
weak current technology in monitoring stress within coal and rock formations. Furthermore, the discernible precursor re-
sponse of weak currents to coal damage provides a vital assurance for predicting coal and rock dynamic disasters through
the utilization of weak current technology. The weak current technology possesses some advantages such as high respons-
iveness, clear precursor signals, and robust anti-interference capabilities. These attributes make it highly promising for
some applications in the stress monitoring within coal/rock mass and the early warning for coal and rock dynamic dis-
asters. In the future, some further researches on the fundamental theory and applied technology of weak current in stressed
coal and rock are needed to provide a support for the development of precise spatiotemporal monitoring and early warning
of coal rock dynamic disasters using the weak current methods.
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Fig.1 Schematic diagram of weak current testing system for loaded coal
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Table 1 Mechanical parameters of coal utilized in the testing
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Fig.2 Sketch of loading and electrode arrangement
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Fig4 Time-dependent variation of stress and current for

specimens CPS03 and CFS03 under stepped loadings
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Fig.7 Time-dependent variation of strain parameters for specimen CPS03 during the compaction stage
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