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Micro-damage model of gas-bearing coal under load and instability
identification criteria
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Abstract: The distribution of pores and skeletons within coal reservoirs significantly affects the migration of gases and the
occurrence of gas dynamic disasters. To further explore the micro-damage mechanisms in gas-containing coal, a detailed
study of the micro-damage process in gas-containing coal was conducted. Atomic force microscopy was employed to con-
duct in-situ tests on the surfaces of protruding and non-protruding coal samples before and after loading. The results indic-

ate that the surface structure of the coal samples changes after loading, with a reduction in closed pore diameter, damage to
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some pores, and a tendency for connectivity between adjacent closed pores. Before loading, the pores in coal samples ex-
hibit irregular distribution, while after loading, pore connectivity increases, and the number of open pore throats slightly
increases. Loading leads to a reduction in the modulus of coal skeleton in protruding coal samples due to pore connectiv-
ity, while non-protruding coal samples experience internal structure compaction, resulting in a slight increase in elastic
modulus due to their higher strength. Micro-damage types and concepts in coal were defined, and the stress distribution
characteristics around coal pores and the coal skeleton were analyzed, revealing the micro-damage mechanisms in gas-
containing coal under different conditions. Simultaneously, the factors influencing the closed-cell micro-gas explosion
were discussed. The stress at the end of a slender elliptical hole is greater along the hole wall, making it more susceptible
to closed-cell micro-gas explosions. Two forms of occurrence of open-pore micro-damage were described, revealing the
constraining effect of the "bottleneck effect” on micro-damage. Inherent fractures were identified as the weak link in the
coal skeleton, and the evolution of their rupture was analyzed. Utilizing theories such as linear elastic fracture mechanics,
elastic-plastic mechanics, and permeation mechanics, criteria for detecting pore damage and coal instability under stress
disturbances were established. The micro-damage characteristics of gas-containing coal and the mechanisms inducing coal

and gas outbursts were summarized, and the research direction of coal and gas outburst was prospected.

Key words: pore space; instability discrimination; micro-damage; coal skeleton; coal and gas outburst
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Fig.1 Schematic diagram of coal body microstructure
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Table 1 Basic information of coal samples
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