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摘　要：我国因采煤活动造成的采空区总量大、范围广，针对采空区煤自燃高温点的有效识别与探

测是煤矿安全生产的重要保障。从采空区煤自燃发生过程、高温点的形成运移特点概述了采空区

高温点的生成演化特性，为采空区煤自燃高温点的有效识别与探测提供基础理论支撑。围绕地下

直探技术、地表及空天探测技术的基本原理、研究进展以及现场实际应用效果，从可靠性、稳定

性等方面进行多元比较，剖析现有煤自燃高温点识别探测技术的适用性。针对探测中存在的实际

难点，拓展分析了矿井声波温度信息探测、基于量子技术的热源探测、毫米雷达波探测技术等新

兴技术的研究现状和应用潜力，进一步推动采空区隐蔽火源精细化探测技术发展创新。通过对现

有技术的综合性研判及新兴技术的前瞻性思考，展望了煤自燃隐蔽火源探测技术的未来发展趋势，

结合当前物探技术和多元信息融合理论的发展趋势，提出了采空区高温点动态运移智能可视化系

统构想，从“空−天−地−孔”的综合化分时分区多维探测模式应用、“特征获取−场景仿真规划−动
态决策”逐级时空演化数字孪生模型两方面阐述了矿井开采全生命周期平台建设的现实意义。通过

该构想的逐步实施，为实现采空区隐蔽火源的高效识别预测和矿井智能化建设提供新的决策思路。
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Identification and detection technology for high-temperature spontaneous
combustion points in goaf areas
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Abstract: The total amount and scope of mined-out areas caused by the coal mining activities in China are large. Effect-
ive identification and detection of the coal spontaneous combustion point in the mined-out zone is an important guarantee
for the safe production of coal mines. From the process of coal spontaneous combustion in the mining area and the charac-
teristics of the formation and transfer of high-temperature points, the characteristics of the generation and evolution of high-
temperature points in the mining area are summarized, and the basic theoretical support is provided for the effective identi-
fication and detection of high-temperature points of coal spontaneous combustion in the mining area. Focusing on the ba-
sic principles, research progress and practical application effects of underground direct exploration technology, surface and
airborne detection technology, the authors conduct multiple comparisons in terms of reliability and stability, and analyze
the applicability of the existing detection technologies for identifying the high-temperature point of coal spontaneous com-
bustion. Aiming at the difficulties in detection, the research status and application potential of emerging technologies such
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as the mine acoustic temperature information detection, the heat source detection based on quantum technology, and the
millimeter radar  wave  detection  technology  are  expanded  and  analyzed.  The  future  development  trend  of  coal   spontan-
eous combustion hidden ignition source detection technology is envisioned through the comprehensive assessment of ex-
isting technologies and the prospective thinking of emerging technologies. Combined with the current development trend
of physical exploration technology and multiple information fusion theory, the concept of intelligent visualization system
for the dynamic transfer of high-temperature points in the mined-out zone is proposed. The significance of the construc-
tion of the platform for the whole life cycle of mining is explained in terms of the application of the integrated time-divi-
sion and multi-dimensional detection mode of “space-sky-earth-hole” and the digital twin model of the step-by-step spatial-
temporal evolution of “feature acquisition-scenario simulation planning-dynamic decision-making”. Through the gradual
implementation of the concept, it provides a new decision-making idea for realizing the efficient identification and predic-
tion of hidden fire sources in the mined-out area and the intelligent construction of mines.
Key words: identification and detection；coal spontaneous combustion；high temperature point；mined-out area；digital
twins；mine
 

煤炭作为中国能源保供的压舱石，对能源安全起

着至关重要的作用。在全球碳中和的背景下，虽然传

统能源体系正面临转型，但富煤仍是中国能源禀赋的

主要特点之一，据国家统计局数据显示，2022年全国

规模以上工业原煤产量 45亿 t，占全国能源消费总量

56.2%，再次证明其在国内能源体系的核心地位[1]。然

而，随着开采活动不断进行，采空区的煤自燃火灾问

题日益突出，已成为煤矿五大灾害中不可忽视的一大

严重问题[2]。

我国煤矿的开采模式和矿井的地质结构造成采

空区环境复杂，使得采空区煤自燃高温点的形成和演

变过程难以掌控。统计数据表明，由采空区煤自燃引

发的火灾事故在矿井火灾中的所占比例正呈现多态

式增长趋势[3]。为确保煤炭资源的安全高效开采，关

键在于防止煤层自燃导致的高温点产生及其扩散，同

时确保监测和防火措施不出现延迟或失效[4]。近年来

许多学者致力于采空区煤自燃机理、采空区高温运移

规律及隐蔽高温点探测技术等方面的研究，旨在揭示

煤自燃的化学动力学过程同时，实现采空区高温隐蔽

火源的精准探测[5-7]。然而，受限于采空区的多变性，

上述关键领域的研究仍然面临挑战。特别是高温点

的定量分析、早期预警机制以及实时监控策略等方面。

采空区高温点识别与探测技术作为保障矿井安

全的“前哨站”，其针对温度信息的早期探测和准确识

别是煤火灾害防控的关键[8]。笔者梳理了煤自燃高温

点的形成演化规律研究；探讨了各类探测技术的优势

和局限性，同时强调了未来极具潜力的技术发展方向，

为采空区高温点探测技术发展开拓新的途径；积极探

索了一种多方法融合的精准探测系统，为构建数字孪

生煤矿提供更为科学有效的思路。同时也为后续智

能化矿井建设提供理论和技术框架支持。 

1　采空区高温点演化运移研究
 

1.1　采空区高温点生成演化过程

采空区高温点的演化运移是一个复杂且动态的

过程，与矿山压力、煤层开采后形成的垮落空间和次

生裂隙紧密相关。这些因素共同影响着采空区内遗

留煤体的自燃行为[9-10]。在这过程中高温点的形成、

发展与煤的氧化反应和蓄热环境密切相关。如何在

复杂的环境中获取气体变化规律、通风情况及掌握其

内在关联是获取采空区高温点演化规律的重心 [11]。

学者们在研究技术手段、形成演化运移机制等方面开

展了大量研究。

(1)采空区煤自燃发生过程。王德明、李增华、徐

精彩、邓军、Kam等众多国内外学者从分子结构模型

构建、自由基反应机理、官能团迁变规律、煤氧化循

环链式反应途径等方面出发，从微观尺度开展对煤自

燃灾变过程的广泛研究，尝试揭示煤体低温氧化至自

然发火整个过程的微观机理 (图 1)[12-16]。后续的研究

依据入手角度和测试方法的不同[17-19]，主要分为以下

方面：从煤本身出发，主要涉及煤中过渡金属元素、氢

原子等化学元素在煤自燃过程中的催化作用探索[20]；

煤中孔隙结构及分布变化对煤氧复合反应热效应及

气体竞争吸附的影响；复杂开采条件下出现的二次氧

化煤、水浸煤、富油煤等特殊煤样的自燃特性研究

等[21-23]；从供氧条件出发，围绕煤氧动力学中主要涉

及的活化能、指前因子、反应速率等关键动力学参数

展开分析，在研究不同变质程度煤的热释放特性、动

力学特征、变化规律等环节的基础上，进一步细化数

学分析模型与阶段温度划分。

宏观层面，围绕煤自燃氧化过程中的关键气体参

数指标，探究煤氧化自燃耗氧速率、产气速率、放热强

度等宏观表征参数的变化规律，深入分析遗煤的宏观
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特性变化规律与其微观特征变化之间的对应关系[24]，

开展煤自燃火灾的前期预警工作。主要体现在气体

分析法 (甲烷比、乙烷比、烯烷比等)的优选、气体预

警指标及临界值确定等方面的研究 (图 2)[25-26]。实验

手段方面，也整体呈现立体多维化态势，通过使用现

代化测试分析技术开展煤自燃热动力学特性定量表

征；应用大型煤自然发火及热分析等试验方法研究煤

自燃过程的宏观特征参数；结合热动力学仿真软件模

拟煤的氧化反应和热传导过程，预测煤层内部的温度

分布和变化趋势；引入岩土工程、地理信息系统等模

拟辅助软件[27]，完善煤自燃预测模型 (表 1)。
(2)采空区高温环境推演。物理相似实验以表征

再现采空区的高温环境，通过控制实验条件，模拟煤

自燃的全过程，揭示采空区高温区域的发生、发展及

其动态变化过程[28]。通过数学理论模型的不断完善，

优化采空区高温点数学模型来详细描述工作面回采

时的温度演化过程。同时结合小波变换分析等方法

进一步评估各区域对温度变化的敏感性[29-30]。实地
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图 1    采空区煤自燃机理代表性学说研究进程及测试分析手段研究[17-19]

Fig.1    Study on the research process and test analysis method of representative theory of coal spontaneous combustion

mechanism in goaf[17-19]
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Fig.2    Part of coal spontaneous combustion gas index type and index form[25]

 

表 1    煤矿隐蔽火源探测方法 (部分)
Table 1    Detection method of concealed fire source in coal mine (part)

探测方法 探测机理 探测流程 实际应用情况

地面钻探法[40] 孔壁温度参数采集观测 地质调查−钻孔施工−仪器下放−
数据采集

其准确性、钻探深度和对复杂地层的适应能力
都相对较好。在德泉煤矿等陕北浅埋房采区得

到应用

无源钻孔测温法 无源温度测量仪连续测温 钻孔选址−钻孔施工−无源测温仪器
下放−数据记录分析

无需供电电源; 连续观测温度，准确率高，在一
些中小型矿山或需要快速评估地下温度的地区

得到应用

分布式光纤测温法[41] 光纤沿线连续温度监测 钻深确定−预定位置钻孔−光纤部署−
持续测温−数据收集分析

由于其高分辨率和持续监测的优点，在大佛寺
工作面、采空区等多场景广泛应用

热红外探测法[42] 基于物体表面热辐射差异推断温度 设备校准−平台搭载采集−数据处理−
分析识别

作为一种有效、迅速的方法，在鲍店煤矿等采
空区的高温点初步识别得到应用

地质雷达探测[43] 通过收发高频率电磁波探测地下的
结构和特征，间接辅助判断温度

信息

选择适当GPR系统和天线频率−
预定路线移动−收集反射数据−提高

数据清晰度分析

可在温度信息获取中起辅助作用，在山西、宁
夏等主要矿区的地质勘探得到应用

电阻率探测法[44] 利用煤燃烧引起周围煤岩层电阻率
异常进行探测

装置选取−测量配置−数据采集分析 可在温度信息获取中起辅助作用，适用于大范
围的煤田火。在山西、陕西等主要煤矿主要用

于识别采空区、探测突水源等目的

磁探测法[45-46] 利用不同温度条件下煤岩矿物磁性
差异获取温度

前期准备−布置测量线−磁场强度
记录−绘制剖面图

在温度信息获取应用中存在挑战，适用于大范
围的煤田火，需要与其他地球物理方法结合使

用，以提供更全面的地下信息

瞬变电磁法[47-48] 基于电磁感应定律，观测脉冲电磁
场激发的二次异常场获得地电异常

信息

设备选取−电极接收器布置−注入电
流脉冲−导电性分布

可间接在温度信息获取中起辅助作用，在主要
煤炭产区，该技术已被应用于解决煤矿的复杂
地质问题，特别是在深层煤矿的勘查和开采过

程中

微震测量法[49-50] 捕捉岩体微破裂过程中产生的震动
信号，获得岩体破裂发生的“时、空、

强”等信息

部署传感器−震动数据采集−信号
处理−震源定位分析−预警反馈

可辅助提供温度变化信息地热活动区，在四川、
安徽等煤矿中，主要用于监测煤层的稳定性和

预测岩爆等地质灾害

同位素测氡法[51] 利用氡气随环境温度升高析出率增
加，且具有向上扩散运移特性来判

断火源位置

选点采样−氡浓度测定-数据分析−
解释定位

在陕西榆林市刘家峁、郭家湾煤矿，中煤平朔
集团有限公司安家岭露天矿等多地开展勘探测

试，有效验证火源位置和范围的准确性

航空航天探测法[52] 利用航空或航天平台搭载的传感器
(热红外传感器、多光谱传感器等)，
对地表进行大范围、高分辨率的遥

感观测

平台选择−载荷配置−飞行路线规划−
飞行任务执行−数据收集分析

适用于具有复杂地形或大面积特征的煤矿，如
新疆、宁夏、内蒙古等地的一些大型煤矿
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数据监测与数值模拟高度结合，以获取采空区煤自燃

氧化升温温度场、氧体积场以及渗流场的运移规律[31]。

目前针对采空区高温点演化运移规律的研究，在

充分考虑空隙结构、漏风规律、工作面倾斜角度等因

素的条件下，主要体现在采空区热环境和流场模拟、

煤自燃与采空区高温点运移动态的关联机制等方面[32-33]。

在未来将继续深入围绕模型细化、多场景下的采空区

高温点运移机制等方向开展研究。以期更为精准地

研究采空区高温点的时空演化模型，满足高温点现场

监控预防的实际需求。 

1.2　采空区高温点形成特点

采空区高温点的动态演化规律受多种因素影响，

包括采空区物理特性 (如几何形状、深度)，煤内在性

质 (如含水量、孔隙结构)，环境条件 (温度、压力、湿

度、通风)，地质条件 (地下应力、岩层裂隙)和开采因

素 (采掘方法、工作面推进速度)等。多因素交织作用

共同影响采空区高温点的形成、发展和迁移过程[34]。

最终导致了采空区高温点具有以下特点：

(1)形成区域深隐。高温点一般集中在采空区深部

区域，适宜风流作用下，煤氧复合反应的作用加剧，放热量

超过散热量，煤体温度不断升高，形成采空区高温点。

(2)形成区域动态。高温点的形成需要消耗大量

氧气。因氧气体积分数限制，高温点往往沿逆风流方

向动态移动，随采煤过程的变化而动态变化。

(3)形成环境复杂。采空区作为有机物和无机物

混杂而成的松散煤岩体，具有多孔性，工作面回采后，

顶板岩层相继垮落，其空气渗流场、温度场、氧气体积

分数分布场和煤的物理化学过程相互影响，呈非稳态

变化。

(4)形成产物多样。高温点形成时，煤中的大分子

经历裂解过程，生成多种不同气体。同时煤中小分子

也会挥发并释放入空气。多样化的气体产物积聚体

现了煤自燃化学反应的复杂性。

面对采空区遗煤与空气接触引发的复杂自燃过

程，高温点信息难以直接准确捕捉。通过对煤自燃过

程中的产气特性、热量释放及磁性变化等物化参数进

行表征和指标确定，深入研究各类采空区高温点识别

探测方法，以期获取准确的温度信息及高温点运移特

性，从而达到后续煤自燃隐患的精准预测防治。 

2　采空区高温点识别探测方法
 

2.1　现有煤自燃高温点识别探测技术分析

基于煤自燃过程产生的标志性物质 (气体、放射

性元素等)和物性变化 (电、磁、光等)，采空区高温点

识别探测技术通过建立上述参数与温度之间的对应

关系，获取采空区温度信息。该技术可为后续探讨高

温点运移规律和进行预测防治性工作提供关键信息[35]。

采空区高温点信息识别领域中，气体分析法与智能数

值计算法应用较为广泛[36-37]：气体分析法通过“测气

定温+测温定位”来确定高温点位置；智能数值计算法

依托海量监测数据，通过构建高温点的分析模型预测

高温点位置[38]。采空区高温点信息探测领域，按照探

测装置的空间定位进行分类，可分为地下直探技术、

地表探测技术、空天探测技术 (图 3)[39]，其相关隐蔽

火源探测技术分类见表 1。
(1)地下直探技术通过直接与目标地层进行物理

交互来获取相关的温度数据。近年来，地下直探技术

经历了持续的进步和完善，主要表现在搭载设备的多

样化 (钻孔瞬变电磁、方位自然伽马等先进技术的复

合探测)、长距超前技术、自动化定向钻探、技术联用

等方面的完善发展[53-54]。对于具有复杂地质结构的

采空区，尤其是在长壁工作面全部垮落法所形成的倾

斜或缓倾斜煤层的采空区，直探技术尤为适用。其固

有局限性主要在于钻孔破坏性和工程量极大，因此不

适用于具有硬岩区域深、地下水丰富、大范围探测等

特点的采空区温度探测。李树静等[55]以大同辛安煤

矿为例，通过“地面+井下钻探法”划定小煤窑隐蔽火

范围，为后续治理措施奠定基础。

(2)地表探测技术通过采用氡气探测、地质雷达

探测、电阻率探测等地球物理方法。探测采空区隐蔽

火源周围所产生的物理化学属性差异或特殊产物，建

立指标性区域分类，间接推断采空区内部的温度分布。

在使用地表探测技术 (电阻率法、磁法等)进行火源探

测时，面对隐藏于深部矿井下的采空区高温隐蔽火源

时会存在深度限制、地质结构干扰等问题。例如测氡

法易受埋深、火区上覆岩层性质、地表大气流动的影

响，仅适用于氡气释放量明显的采空区；电阻率探测

法适用于较浅层采空区，但由于该方法易受大地杂散

电流干扰，难以清晰分辨小尺度结构等问题干扰，不

适用于深层或导电性强的采空区域探测；磁法探测则

适用于含有磁性矿物的采空区，对于非磁性岩层或地

区反应不明显。林柏泉等[56]对采空区热动力灾害信

息探测技术方法展开综述整理，对地表探测技术中有

关火区圈划[57]、多元电磁探测技术[58]等采空区复杂条

件下灾害信息探测与火源定位技术发展趋势展开讨

论。马子钧等[59]以内蒙古乌海市公乌素露天矿为例，

通过地质雷达和圆锥型瞬变电磁法，结合地面冒烟区

位置，成功探测了火区着火点及其地下通道的地球物

理特征和分布范围。

(3)空天探测技术主要利用航空航天观测平台，搭
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载相应传感器对地表进行大规模、高分辨率的探测监

测。具有覆盖面积大、探测速度快的显著特点。由于

其高空视角，能够提供整体的温度分布图。目前航空

航天探测技术在采空区温度探测中已逐渐成为一种

关键工具。尤其搭载红外成像技术后，能有效捕捉浅

层、地表温度变化大的采空区[60]。在采空区温度探测

过程中，尤其是在大范围和长时序的监测效果上具备

明显的优势，其主要局限性在于易受到大气、云层和

其他环境因素的影响，对深部采空区探测信息有限等

劣势，在具体探测中多用于高温区域边界界定和梯度

划分，并以其他物探技术进行辅助精细化探测。赵毅

鑫等[61]以神东上湾煤矿 12401工作面为实验背景，通

过无人机搭载红外相机，结合边缘检测技术有效识别

获取了工作面附近地裂缝的温度信息。汪云甲等[62]

结合新疆阜康、米泉等隐蔽火源探测实际，围绕“多像

识源”研究链条，探讨了极化时序 InSAR、时空温度阈

值法、多源卫星遥感等方法的应用进展及效果。

实际应用中，单一技术很难完全满足所有需求，

交叉应用多种技术往往能获得更全面、准确的结果。

原刚[63]以新疆典型煤火区作为探测对象，结合卫星和
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Fig.3    Mine high temperature fire source detection technology
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无人机的热红外遥感技术、地面综合监测及理论分析，

对优化地表热异常数据获取、重建地下火源演化模型、

地表与地下火源的时空关联特性等方面展开研究。

通过综合应用各类地球物理勘查技术，研究人员在老

采空区勘察治理、浅埋煤层火源探测等方面取得了显

著成果，有效地识别了待测区域的结构和特征，提高

了采空区火灾隐患的识别与处理效率，为后续的地层

治理提供了可靠的理论依据[64-65]。然而，当前的探测

手段在应对复杂采空区时仍存在一定的短板，因此急

需进一步研发和应用具有更高精细度、更强灵敏度和

更优分辨率的新型探测技术，以应对多变的地质结构、

深层的隐蔽火源及煤层自然特性带来的多重干扰。 

2.2　采空区高温点探测难点

采空区煤自燃探测的关键任务是识别出特定区

域内的高温热点。这些高温区域的存在可能会对磁、

电性等非接触探测技术所捕捉到的关键信号产生影

响。加之采空区空间大、不均一性强，相关信号容易

淹没其中。关于采空区高温区域的探测特征难点如下：

(1)探测路径隐蔽。采空区受残留煤柱、人工工

程、断层等因素影响，内部环境复杂。例如上覆岩层中

 “横三区”和“竖三带”分布、遗煤空间分布特征及物

化特性、不同类型采空区的沉陷机理等均存在差异，

导致探测介质在其中的运移路径具有极高的复杂性。

(2)动态环境探测辨识难。随采矿作业的进行，采

空区环境持续动态变化，如通风条件、岩层裂隙等条

件的改变。采空区失稳可能会诱发巷道顶板垮落、围

岩片帮和底板隆起，还可能会诱发矿震，采空区内分

布埋设传感器难度较大，使得高温点的位置和特性也

随之变化。

(3)信号精准采集难。由于采空区内部的多变环

境 (温度、湿度、介质非均匀性等)，可能导致探测信号

的衰减或失真。此外，煤岩层中的自然裂隙 (层理面、

节理面等)、机械噪声和其他设备的信号可能互相干

扰。这些因素都给准确识别和定位采空区高温点带

来了新的挑战。 

2.3　采空区高温点探测新技术探索 

2.3.1　声波感温探测技术

作为一种非接触式温度测量技术，声波感温探测

技术在矿区温度异常地区的信息实时获取和监测方

面，具有良好的应用前景。该技术利用声波在采空区

遗煤空隙中的气体进行传播的特点，通过确定采空区

梯度温度变化与声飞渡时间的物理关系，解算温度值

(图 4)。通过空间排列的声波收发设备来收集测试空

间内各个声道的信息。运用高斯函数、正则化重建算

法和同步迭代算法等技术，对温度场进行重建，得到

被测物体的内部温度分布[68-69]。
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图 4    声波隐蔽火源探测过程[66-67]

Fig.4    Sound wave concealed fire source detection process[66-67]
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不同于传统的接触式测温技术，声波感温探测技

术既具备非接触性的特点，也能实时获取和监测矿井

领域中的矿区温度异常地区信息。在矿井采空区隐

蔽火源的探测领域，基于声学法的异常温度检测技术

已取得初步进展。目前，已开展有关松散煤体非均匀

温度场下的声飞渡时间算法优选、气−固两相中的声

传播特性、声信号吸声衰减规律和优选声波信号等方

面的前期基础性研究[70-72]。未来研究方向将聚焦于

三维实体探测过程中的抑噪技术，提高温度测算模型

精度在揭示声波感温原理的前提下为实现复杂采空

区高温点探测做准备。此外，在不断优化声波探测技

术装备的同时，构建声波在线采空区高温点探测系统

以实现采空区高温异常区域的动态可视化监测，为未

来的隐蔽火源精确探测提供坚实的理论和技术基础。 

2.3.2　基于量子技术的火源探测

量子技术 (特别是量子传感器技术)作为一种非

接触式地球物理探测手段，在矿产探测、精密地球测

量和特定工业热处理等场景中逐渐崭露头角[73]。在

矿井火源探测领域，利用量子态的叠加和纠缠特性，

理论上可以精确地捕捉到异常温度区域的微小变化，

为探测深藏的火源提供了全新手段。当前已开展针

对钻石矿石中的单一缺陷进行高精度纳米尺度的温

度感测[74-75]，展示了在纳米尺度上利用矿石特性进行

高精度温度测量的潜力。利用特定配置的量子传感

器获取火源相关的量子信号，借助于量子计算和量子

干涉技术，实现对火源温度场的精准映射，进而了解

被测矿区的深部温度特性 (图 5)。尤其是在开发更高

效、更灵敏的纳米级温度传感器方面。未来的研究将

更多地集中在利用量子特性模拟火源的热动力学行

为以及提高量子传感器的灵敏度和稳定性，同时对量

子态传输、叠加效应及火源的微观量子结构进行更为

深入的研究，进一步揭示其基于量子原理的探测机制。
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图 5    基于量子技术的火源探测过程构想

Fig.5    Conception of fire source detection process based on quantum technology
 
 

2.3.3　毫米波雷达火源探测

作为一种操作在 30～300 GHz内的雷达技术，以

其出色的空间分辨率和穿透能力在天气信息获取、遥

感卫星通信、人体安全检查等方面得到广泛应用[76]。

在未来新的矿井火源探测技术中，该技术可利用毫米

波的波长特性，通过采空区内火源产生的温度变化与

气体介电常数差异变化进行高效探测 (图 6)。其能够

在视线受阻或烟雾密集的环境中探测到微小的温度

变化或动态异常，为火源的早期发现和定位提供探寻

基础。刘宏等[77]成功利用毫米波雷达技术探测山火

烟雾距离范围，此案例可为采空区隐蔽火源探测提供

一定技术借鉴及思考。依托毫米波雷达的实时监测

特性，对火源位置和温度分布进行实时探测分析，进

而获取矿区的火源温度特性。

毫米波雷达技术凭借其在低能见度条件下的高

精度分辨能力，逐渐受到矿山物探领域的重视。现有

研究已涉及矿井本安传感器[78]、矿车检测跟踪算法[79]

等方面软硬件开发与研究，在未来将会面向人员设备

高温点定位、障碍物和空腔检测、结构稳定性评估等

方面投入更多的力量。特别是针对矿井采空区的火

源探测中，探明采空区不同温度下气体介电常数等基

础参数变化与毫米波之间的对应关系；开展矿井内部

多种材料对毫米波的反射和吸收特性研究；针对不同

矿区环境，优化雷达波的频率和功率配置，提高探测
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精度；探究毫米波的波长特性受温度变化影响后与氧

气体积分数的对应关系，从而依据煤自燃极限参数快

速判定待测区域是否处于接近自燃状态的危险区域，

为采空区的三带划分提供依据。这将为未来矿井的

温度异常区域的精准判定提供一种更为高效和准确

的技术手段。 

3　采空区高温点动态运移智能可视化系统
构想

采空区煤自燃作为矿山火灾的主要诱因，如何高

效、准确地识别与探测其高温点成为透明矿山数字化

建设的关键技术之一。通过深入剖析矿井智能化建

设过程中存在的问题、总结矿井火灾探测监测技术装

备的发展趋势，提出一种采空区多方法融合的精准探

测技术构想，特别是强调基于数字孪生技术的在高温

点探测的应用前景，以期为未来的矿井智能化建设全

过程提供新的研究视角与思考。 

3.1　采空区高温点综合智能化多维探测系统 

3.1.1　“空−天−地−孔”多维化异常 区域探测

随着矿井的不断深入，针对采空区高温点信息的

探测识别技术发展需求更加迫切。不同的探测方法

针对不同的地质环境都有其独特的优势和局限性。

为了确保探测的准确性和可靠性，提出了采空区高温

点多维探测模式，即充分利用多种探测手段的互补性，

综合各类数据以形成更全面、准确的地下温度分布模

型。该模式的核心思想是将多种探测技术相结合，如

地质雷达、磁探测、热红外探测、瞬变电磁法等。根

据特定采空区的地质、地貌和物理环境进行灵活选取。

每种探测方法针对其最佳应用场景产出的数据可以

为其他方法提供基准或验证信息，形成数据互支模式，

增强了探测结果的信度。同时将所有探测数据集成

至一个统一的数据库中，方便数据管理与检索的同时，

也可为后续分析与建模提供丰富的数据支持。在综

合数据库基础上实现对采空区高温点的精确定位和

属性解读。

在实际的探测过程中，需根据地下采空区的分布

范围、空间形态特征和采空区的冒落状况等特征进行

探测方法的选取，整体可分为以下 3个探测阶段：初

步定位阶段，采用航空航天、地质雷达等大范围探测

技术，完成对温度异常区域的初步划定；细分阶段，在

确定火源的粗略位置后，运用直探法、氡气探测和电

阻率探测等，进一步细化采空区内部的温度分布，建

立指标性区域分类，将粗略大面积的火源范围拆解为

更具体的指标性区域；精确探测阶段，为确保对高温

点探测的最大精确度，引入矿井声波温度信息探测、

基于量子技术的热源探测、毫米雷达波探测技术等新

技术，优化火源范围分布，精准标定高温点。

采空区高温点多维探测模式的提出与实践，旨在

通过技术整合与数据融合，实现对采空区高温点的高

精度、高稳定性探测。这种模式为煤矿的安全高效生

产提供了重要的技术保障，同时也为地球物理和地质

探测领域带来了新的研究思路。 

3.1.2　高温点综合智能化探测系统设想

采空区煤自燃高温点识别探测监测技术的发展

历程可概括为 3类探测模式，每种模式均从不同视角

为提高矿井安全性提供了重要的技术支撑 (图 7)。
(1)静态采空区精准探测模式：基于采空区的温度

场分布式探测技术，考虑到采空区的特殊环境与复杂

性，相关硬件的开发着重于耐高温、抗冲击与低功耗

设计。通过开发相关密闭采空区的多参数无线监测

硬件以实现高精度的静态高温点探测，再同智能解算

法相结合，对采空区气体浓度场和高温区域的同步分
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图 6    毫米波雷达火源探测技术

Fig.6    Millimeter wave radar fire source detection technology
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析[80]，为矿井安全提供双重保障，以实现对采空区进

行细致、全面的温度场信息感知。

(2)动态采空区精准识别监测模式：体现在煤自燃

特征信息高密度网络化监测、多气体激光光谱技术应

用、井下新型束管监测技术研发、动态预警系统开发

等方面的应用上。结合实时数据捕获分析与数据驱动

的决策支持，为准确识别采空区火源隐患提供技术支持。

(3)综合系统开发模式：在前 2个模式的基础上，

进一步研发综合性的高温点识别探测系统，该系统不

仅能够对收集到的各类高温探测数据进行融合识别，

更具备隐患预测功能，为煤火防控领域提供了全面的

解决方案。

基于上述高温点识别探测监测模式的发展历程，

设想在综合系统开发的基础上深度开发采空区高温

点综合智能化探测系统。该系统将集合多种探测模

式，建设集“空−天−地−孔”为一体的综合探测方式，

实现以采空区温度信息探测为主、多种地质探测为辅

的多重信息探测。利用现代云计算、物联网和 AI技

术，整合高精度的各类地质信息传感器、风流动态探

测仪以及温度监测设备所探测的信息，从多个层面对

高温点进行实时监测。并结合基于应急处置知识图

谱，精准执行“风险异常定位−应急方案分析−决策快

速响应建议”处置流程，使矿井管理者不仅能够实时

掌握高温点运移态势，还可以通过隐患预判 APP随时

随地进行风险监测和应急决策，实现更为精准的高温

区域移动态势研判与科学防控。
 

3.2　采空区煤自燃时空演化数字孪生模型构建

在矿井探测技术的发展中，数字孪生技术的引入

为多方法融合精准探测带来了革命性的思考。在基

于数字孪生技术的采空区多方法融合精准探测技术

建设中，如何克服采空区内部的强不确定性，建立一

个与实际矿井环境高度匹配的数字模型，完成对采空

区环境的精细刻画。利用井下的多通道信息采集模

块动态感知煤自燃多灾源参数变化，以实现井上井下

的信息实时传输交流，使控制中心可以通过数字模型

实时了解井下状况 (图 8)。
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采空区内部空间特征获取方面，利用数字孪生技

术构建煤矿采掘工作面的详细三维地质模型。这包

括煤层、采空区、地质异常构造以及生产场景的空间

分布特征。这些模型基于三维地震动态解释、离散光

滑插值、钻探物探综合解释等技术。前期通过地质雷

达探测、磁探测、航空航天探测等技术手段，详细了解

采空区的塌陷深度和范围，发现异常变化和裂缝；在

此基础上获取以温度信息为主的采空区物化环境参

数、利用实验测试分析结果掌握采空区遗煤及岩石的

微观宏观特征；同时根据矿井实际开采情况获得推采

速度、通风情况等工况条件数据，集成大量多维度采

空区数据后进行筛选整合，将经过验证和校准的数据

用于采空区内部的高精度虚拟模型的构建，使其尽可

能真实动态地反映采空区内部情况及煤自燃高温点

运移过程。

在模型的基础上，利用数字孪生技术进行场景仿

真和规划。辅助掘进工作和回采作业的进行同时，为

多类探测传感装置的排布提供科学依据。利用并行

数据采集方法整合火区监测、瓦斯监测、顶板监测、

矿压监测、粉尘监测、通风系统等多种环境数据，同步

更新至三维地质信息数字孪生体中，形成一个全面且

动态的矿井监控系统。为多灾源分级预警体系的实

施提供了实时模拟和分析的能力，同时可视化展示高

温点的动态变化和运移趋势，为后续矿井热动力灾害

防治和工作面的动态推进提供依据。

为实现国家到 2035年各类煤矿基本实现智能化

的整体战略[81]，矿山建设经历了从单机综合自动化到

局部智慧体的大幅跨越，并在未来向建成集闭环运行

体系、远程诊断维护、智能决策、系统预测于一体的

智慧矿山发展。结合技术发展趋势和行业经验，探索

符合煤矿实际的智能化煤矿解决方案，以数字孪生为

核心，整合上述探测推进平台的经验与成果，构建一

个涵盖矿井开采生产全生命周期的平台 (图 9)。基于

数字孪生技术，围绕矿井互联运营、虚拟化评估、多灾

源数据库预警、矿山风险智能感知等关键问题[82]展开

探索，将煤矿建成“系统可靠、装备先进、管理科学、

决策智能”本质安全型智能矿井。在保障生产安全的

前提下，实现矿井的高效数字化转型，从而推动矿井

开采生产朝向可持续、绿色的方向迈进。 

4　展　　望

深度剖析采空区高温点的形成演化规律识别探

测方法及构建动态运移智能可视化系统，对于实现采

空区煤自燃高温点的精确探测和管理至关重要，相关
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图 8    数字孪生工作面动态监测推进平台构建设想

Fig.8    Construction idea of dynamic monitoring propulsion platform for digital twin working face
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研究迫在眉睫。采空区煤自燃高温点识别与探测技

术发展应以“精确识别、智能应对”为基本思想，后续

重点应开展以下研究：

(1)煤自燃与高温点演化机理深化研究。包括煤

的物理化学反应过程与采空区环境条件的交互作用

以及与其他相伴变量的关系，在实验与数值模拟相结

合基础上，展开多规模的高温点运移规律研究等内容。

(2)识别探测技术的综合革新与升级。不断加强

学科融合性探测新技术发展，深入探索声波感温探测

技术，基于量子技术的火源探测技术及毫米波雷达火

源探测等新兴技术；研制声、电、磁等多物理参数集合

式的主、被动源综合探测与成像智能化仪器设备，为

矿井的安全生产提供更加精确、快速和高效的探测

手段。

(3)采空区高温点智能化探测系统建设。深度开

发依托于数字孪生技术的火源探测系统，并与掘进采

煤机械等设备相结合，建设一体化的识别预测监控体

系，对开采活动中的隐蔽火源等多种灾害源因素进行

信息采集，形成一个完整的、协同工作的生态系统。

(4)全生命周期矿井开采生产平台构建。基于数

字孪生技术，进行采空区高温点综合智能化探测系统

平台建设，形成集识别、探测、监控、预测、应急响应

等功能于一体的多灾源判识防控体系。研究矿井典

型灾害风险智能识别大模型与交互生成式深度学习

算法，结合知识图谱技术与专家决策交互式系统反馈，

开发煤矿典型灾害风险智能预测 AI大模型，最终实

 

交通 应急 管网 构筑物维护 日常巡检 实时调控 ······

······

高效映射 , 数据驱动

物联感知 物联感知

通过传感器布控、测点统一监控、
动态测绘等方式收集矿井前端数据

数字孪生矿井信息模型平台

关联系统综合

管理分析

现有信息化

管控系统

生产三维场景

孪生再现

矿井全过程

状态监控

井上下

全方位

保障

存储设备 感知设备 物理服务器 交换机 光缆 硬件平台

数
字
平
台

一个平台

一朵云

一张图

一张表

融合应用平台
AI

IOT

大数据

视频

VR/AR

云计算平台 大数据治理 挖掘分析 云储存

云计算AI预警模型 AI预测模型

统一数据库

统一报表格式

智能煤矿4D GIS 

透明地质保障信息系统

现场作业过程

网络装备

一张网

万兆光网

5G

综掘

输送带

辅助运

作业人员

人员定位

机电传感

语音广播

移动终端
······ ······ ······

智能地测 智能采掘

智能机电 智能运输

智能通风 智能调度

N  个应用

安全生产中心 综合集控中心 智能运维中心 安全管理中心 调度指挥中心 经营管理中心

NB-loT

融合通信

数字孪生

图 9    全生命周期矿井开采生产平台化构想

Fig.9    Conception of full life cycle mine mining production platform
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现异常事件的预警描述与专家建议反馈，完成井下多

场景中异常事件的多模态预警决策工作。
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