
 

非刀具破岩理论与技术研究进展与趋势
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摘　要：随着我国深地战略的逐步实施，深部资源开采和地下空间建设迎来新的机遇，但也面临诸

多挑战，高地应力、高地温和坚硬岩体等极端地质条件层出不穷。岩石破碎技术是所有资源开采

和地下空间建设的主要工程活动，是决定施工工艺和工程效率的主要因素。在极端地质条件下，

以刀具为基础的岩石破碎技术由于刀具磨损快、岩石破碎效率低，已成为遏制深地战略顺利实施

的关键技术瓶颈，为解决深地岩石高效破碎难题，保障深地战略的顺利实施，迫切需求革命性的

岩石破碎技术。无刀具破岩技术作为刀具破岩技术的重要补充，是突破刀具破岩技术瓶颈的可行

性思路。为此，将无刀具破岩技术归纳为冲击破岩、热应力破岩和冲蚀磨损破岩 3 类技术体系，

系统分析了水射流、激光和磨料空气射流等 16 种岩石破碎技术，总结了每种技术的发展历史和技

术原理，分析了其破岩优势和技术瓶颈。得出，目前非刀具破岩技术没有在资源开采和地下空间

建设中广泛应用的主要原因为破岩能耗高、适用较差和技术装备复杂等。相比刀具破岩，非刀具

破岩技术破岩能量利用率较低，水射流破岩比能耗为刀具的 40～70 倍。微波、激光和等离子体等

技术对施工环境要求较高，无法适用于钻井、隧道掘进等受限和恶劣环境。为解决极端地质条件

岩石破碎难题，提出多种非刀具破岩技术协同破岩的思路，充分发挥每一种非刀具破岩的技术优

势，构建了以射流切缝卸除高地应力、粒子冲击体积破碎坚硬岩体的破岩理念，最大限度降低岩

石破碎能耗，简化系统装备，为岩石破碎技术向非刀具化发展提供理论支撑。
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Abstract: With the gradual implementation of China’s deep-earth engineering strategy, deep resource extraction and un-
derground space construction have brought in some new opportunities, but they also face many challenges, with extreme
geological conditions such as high geopathic stresses, high ground temperatures and hard rock bodies popping up all the
time. Rock breaking technology is  the main engineering activity for  all  resource extraction and underground space con-
struction, and it is the main factor determining the construction process and engineering efficiency. Under extreme geolo-
gical conditions, tool-based rock breaking technology has become a key technical bottleneck to affect the smooth imple-
mentation of deep-earth engineering strategy due to fast tool wear and low rock breaking efficiency. In order to solve the
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problem of high-efficiency rock breaking in deep-earth and to guarantee the smooth implementation of deep-earth engin-
eering strategy, there is an urgent need for a revolutionary rock breaking technology. As an important supplement to the
tool-based breaking technology, the non-tool rock breaking technology is a feasible solution to break through the bottle-
neck of the tool-based breaking technology. To this end, the non-tool rock breaking technology is summarized into three
types of technological systems, namely, impact rock breaking, thermal stress rock breaking and erosion and abrasion rock
breaking. Sixteen types of rock breaking technologies, such as water jets, lasers and abrasive air jets, etc., are systematic-
ally analyzed. Also, the history of the development of each technology and their technical principles are summarized, and
the advantages of the rock breaking and the technological bottlenecks are analyzed. It is concluded that the main reasons
why  the  current  non-tool  rock-breaking  technologies  are  not  widely  used  in  resource  extraction  and  underground  space
construction are high energy consumption, poor adoptability and complex technical equipment. Compared with tool-based
breaking,  non-tool breaking  technology  has  a  lower  energy  utilization  rate  for  breaking  rock.  The  specific  energy   con-
sumption of water jet breaking is 40−70 times that of a tool breaking. Microwave, laser and plasma technologies require
high-standard operation environment and cannot be applied in drilling, tunneling and other restricted and harsh environ-
ments. In order to solve the problem of rock breaking in extreme geological conditions, the idea of synergistic rock break-
ing by multiple non-tool rock breaking technologies is proposed, giving full play to the technological advantages of each
non-tool rock breaking technology. The rock breaking concept of unloading high geo-stress by jet slit and breaking hard
rock by particle impact volume is constructed to minimize the energy consumption of rock breaking, simplify the system
equipment, and provide a theoretical support for the development of non-tool rock breaking technology.
Key words: rock breaking；non-tool breaking；tool breaking；hard rock breaking；deep earth space
 

我国深部资源储量丰富，目前 1 000 m以深的煤

炭资源量占已探明煤炭资源储量的 53%，超过 4 500 m
以深的油气资源储量占探明油气资源储量的 1/3，超
过 3 000  m的地热资源占探明地热储量的 95% 以

上[1-7]。深部资源的高效开采是保障我国能源战略顺

利实施的重要保障。随着我国浅中部资源的逐渐枯

竭，开采深部资源将逐渐成为常态[8-9]。我国千米矿井

已多达 50余座 [10]，果勒 3C井已经突破 9 000 m[11]，

2口万米钻井已开始施钻[12]。但深部地层的高地应力、

高地温等极端复杂条件为地下井巷建设、钻井和资源

开采等工程带来前所未有的难度。高地应力、高地温

岩石掘进导致刀具磨损快、寿命短，严重遏制了工程

效率，在高地应力坚硬围岩隧道掘进工程中，TBM刀

具使用时间为 1～2 d，换刀时间占据施工时间的 30%
以上[13-14]。在深地页岩气、干热岩等非常规能源钻井

工程中，刀具磨损是抑制工程效率的主要因素，甚至

成为决定深地资源是否能够开采的决定性因素。突

破高地应力、高地温和坚硬岩石破碎技术瓶颈，解决

深地层出不穷复杂地层钻探难题，是推动深地战略和

能源战略顺利实施的关键[8,15-17]。

相比于刀具破岩，无刀具破岩技术以非刀具截割、

冲击的方式破岩，从源头上解决了刀具磨损和换刀的

难题。根据破岩作用机理的不同，非刀具破岩技术可

分为：以动载荷冲击破岩为主的高压水射流破岩技

术[18-19]、超临界二氧化碳射流破岩技术[20-21]等；以热

应力为主的激光破岩技术[22-24]、微波破岩技术[25]等；

和以冲蚀磨损为主的磨料空气射流技术[26-29]、磨料水

射流技术[30-31]等。几乎所有的非刀具破岩技术在其

发展之初并非为了解决岩石破碎难题。比如水射流

切割技术主要用于机加工、表面处理和清洁等领域，

并发挥了重要作用，甚至成为不可取代的技术[32-34]。

凭借水射流优秀的切割、破碎能力，逐渐被推广应用

于石油钻井、射孔和煤层卸压增透等资源开采领

域[35-36]。但其破岩能力并不能完全解决井巷建设、地

下空间开挖的问题，仍需要配合刀具联合破岩。采用

水射流辅助刀具破岩不仅能够预先破碎岩体，降低岩

石力学强度，而且能够充分冷却刀具，提高掘进效

率[37-38]。但仅使用水射流进行破岩并不能满足现有

的工程需求，在硬岩掘进时，水射流技术需要极高的

水压 (≥ 200 MPa)[39-42]才能有效切割岩石，比能耗为

刀具的 40～70倍[43-44]，不仅增加了整机功率而且对

设备的耐压和安全性能提出了更高要求。即便采用

磨料水射流可以降低破岩阈值，但由于磨料连续供给、

工具磨损等关键难题，(超)高压水射流在硬岩破碎领

域并没有得到广泛应用。激光破岩技术最早提出是

用于金属加工 [45-49]，并逐渐推广应用于岩石破碎领

域[24,50-51]。岩石与金属材料不同，其导热性差，依靠热

应力切割的激光需要较高的功率才能实现岩石的有
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效熔化和破碎[52-53]。尤其在环境恶劣的掘进工作面，

激光能量衰减严重[54-56]。这一问题在以热应力为主

的破岩技术中普遍存在。目前尚未见以热应力为主

的破岩技术在工程中广泛应用的相关报道。

在刀具破岩技术对硬岩破碎领域的瓶颈无法突

破时，非刀具破岩技术是突破该瓶颈的可行性途径。

但非刀具破岩技术尚无法达到工程应用的要求。为

促进深地战略的实施，寻求非刀具破岩技术的发展方

向，充分发挥其破岩优势，解决硬岩破碎关键难题势

在必行。为此，笔者系统梳理了非刀具破岩技术，根

据破岩机理的不同进行分类，归纳总结了各技术的发

展历史、破岩机理，进一步明确各技术优势，指出非刀

具破岩技术发展方向，展望硬岩破碎完全无刀化的思

路和前景，为突破高地应力、高地温硬岩破碎提供理

论支撑。 

1　冲击破岩技术

采用冲击作用破岩的方式思路简单，只要使用的

介质具备足够的冲击动能便可冲破岩石。基于这种

思路，以冲击作用为主的破岩方式应运而生。 

1.1　高压水射流破岩技术

水射流技术起源并兴盛于表面处理、切割等领

域[32,57]，19世纪中叶首次应用于矿场开采[58]，20世纪

初，我国开始将水射流技术应用于水力采煤[59]，并在

近 50年得到了迅猛发展。得益于水射流技术装备的

发展，尤其是高压水泵的发展，水射流破岩技术被广

泛应用于石油钻井、瓦斯治理、煤炭开采和巷道掘进

等领域[60-64]。但随着深地战略的实施，深部资源开采

面对更为复杂的地层环境，高地应力、高地温、坚硬岩

体采掘已经成为常态，这也对传统水射流破岩理论和

技术提出了更高的要求[65]。

高压水射流破岩是利用高压水泵将水进行增压，

然后经过喷嘴将静压能转化为射流冲击动能，对岩石

进行冲击、侵蚀，破碎岩石[66-67]，破岩系统如图 1所示。

目前普遍认为高压水射流破岩理论主要包括拉伸−水
楔岩石破坏理论 [68-71]、准静态弹性破碎理论 [72-75]

(图 2)、应力波破碎理论[76-78]、密实核−劈拉岩石破坏

理论[79-81]。由于破岩过程较为复杂，各种理论的提出

都有一定局限性。目前学界较为认可的是综合破碎

理论，该理论认为煤岩体会受到冲击动压、准静态集

中应力、空化气蚀和应力波的综合作用[82]。但水射流

破岩过程中哪一种作用起主导作用，仍没有定论。这

不仅与岩石的非均质性有关，也与射流破岩动态发展

的属性有关。尤其在冲蚀坑形成之后，在返流的作用

下，射流的破岩机理将更为复杂。考虑反射流体对射

流流场结构和冲击压力的影响，定量表征岩石的裂隙、

节理和层理等结构面。在此基础上，进一步完善射流

理论，寻求提高破岩效率的方法。水射流破煤岩效果

如图 3所示。
  

高压水泵

高压
喷嘴供水单元

高压水输送单元

电机动力系统

图 1    水射流破岩系统[83]

Fig.1    Water jet rock breaking system[83]

 
  

水射流

包络线

高压水
冲击波

侧面射流

瑞利表面波

剪切波

压缩波
反射拉伸冲击波

图 2    准静态破岩理论[60]

Fig.2    Quasi-static rock-breaking theory [60]
 

  

砂岩

P=250 MPa P=300 MPa P=250 MPa P=300 MPa

煤样

图 3    高压水射流破岩效果[84]

Fig.3    Effect of high-pressure water jet breaking rock[84]
 

在高地应力、高地温和坚硬岩体等复杂环境中，

水射流破岩技术瓶颈是其较高的破岩压力和较低的

破岩效率。破碎抗压强度超过 160 MPa的花岗岩需要

超过 400 MPa的水压[85]，依靠水射流形成的冲击应力

波破碎岩石，其破岩比能耗为刀具的 40～70倍[43-44]。

国内首台高压水射流耦合破岩 TBM“龙岩号”[86](图 4)
采用 270 MPa压力的水射流辅助破硬岩，虽然取得了

一定的工程效果，但该技术并没有得到广泛推广。关

键原因是高水压使系统装备极度复杂，不仅挤占了
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TBM有限的空间，而且极大地增加了系统的风险度和

系统能耗。

如何在不增加水射流压力的基础上，提高破岩效

率是水射流破岩技术发展的必由之路。唯一的途径

是提高射流破岩能量转换率。如优化喷嘴结构、改变

流场结构、调整射流−岩石接触方式等[87-89]。优化喷

嘴结构是提高能量转化效率的主要手段之一。曲面

喷嘴相比较锥形喷嘴和圆锥收敛型喷嘴能量转化效

率更高，但由于曲面喷嘴加工难度大，应用较多的仍

然是圆锥收敛型喷嘴[90]。除此之外，空化喷嘴和脉冲

喷嘴均能够形成特有的射流形式，提高能量转化效

率[91-92]，这 2种射流在后续 2节进行详细综述。

在喷嘴结构日臻完善的同时，通过调整射流−岩

石接触方式是提高射流能量转化效率的重要手段。

射流入射角度对于射流冲击效果具有重要影响[40,93-94]，

入射角在 75°左右时破岩效果最佳。靶距也是影响射

流能量转化效率的关键因素，一般认为最优靶距为

8～10倍喷嘴直径。喷嘴高速旋转可以避免在定攻角

工况下出现的水垫效应，有助于提高能量转换效率[95]。

旋转速度或者横移速度对弱化水垫效应和提高能量

转化效率具有重要影响。且射流压力和旋转、横移速

度是相互匹配的，即每一射流压力都有与之相匹配的

最优旋转、横移速度[96-97]。

但仅从上述几个方面提高射流能量转化效率仍

然不能解决水射流在硬岩破碎领域的关键难题，目前

连续射流的能量转化效率仍然较低，往往低于 10%，

仍有较大的提升空间。在提高射流冲击动能的同时，

寻求合理的途径进一步提高射流能量转化效率是水

射流破岩理论和技术的发展趋势。 

1.2　脉冲水射流破岩技术

20世纪 70年代，人们从追求高压水射流转向提

高射流冲击效果的研究上来，到 80年代，脉冲射流形

式以其能明显降低射流压力开始得到发展 [98]，并于

80年代中期开始逐渐应用于石油钻井等领域。

脉冲水射流可有效减弱水垫效应，提高射流峰值

压力，其破岩能力显著优于连续水射流[99]，是提高射

流破岩能量转化效率的有效途径，脉冲射流系统如图 5
所示。根据脉冲产生的原理，脉冲水射流技术分为冲

击挤压式、截断式、自激振荡式 [100-101]，破岩原理如

图 6所示。
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图 5    增压式脉冲水射流系统[102]

Fig.5    Pressurized pulsed water jet system [102]
 

任何一种脉冲水射流均是通过产生间歇性“水锤

压力”作用于岩石，冲击应力波在岩石内部不断地叠

加、反射，使岩石产生拉伸、剪切和疲劳形成裂纹。当

水锤压力足够大时，岩石内部可形成贯穿性裂纹，使

岩石发生体积破碎。如冲击挤压式脉冲水射流，落锤

冲击腔室内的水产生单脉冲，能够将花岗岩试样体积

破碎 (图 7)。截断式脉冲水射流通过截断连续射流，

减弱水垫效应、提高水锤压力，也可产生较好的破岩

 

图 4    高压水射流耦合 TBM龙岩号

Fig.4    High-pressure water jet coupled TBM Longyan
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效果。与连续水射流相比，冲击挤压式和截断式脉

冲水射流明显提高了射流能量转化效率，破岩效率更

高。但冲击挤压式和截断式脉冲水射流产生装备较

为复杂，在施工空间受限的土木工程中，尤其是钻井、

钻孔内破岩无法应用[78,103-104]。采用电磁和声波激励

的脉冲水射流存在相同的技术瓶颈。

相比它激式，自激振荡脉冲水射流依靠自激振荡

脉冲喷嘴形成脉冲，装备简单，具有更高的工程适用

性。自激振荡喷嘴是形成脉冲射流的关键装置，主要

有霍姆赫兹式和风琴管式[105-106]。射流在喷嘴振荡腔

内产生扰动，扰动向下游发展，在碰撞壁处返回并和

上游扰动叠加，使扰动放大，提高射流脉冲压力。通

过调整喷嘴腔径比、碰撞壁角度和下游喷嘴直径可调

整射流压力和频率，在增大射流脉冲压力的同时，促

使谐振效应的发生，将破岩效果最大化[107-108]。
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图 7    脉冲水射流冲击花岗岩[102]

Fig.7    Pulsed water jet impact on granite[102]
 

脉冲幅值和频率是决定破岩效率的关键。但自

振脉冲水射流并不能像冲击挤压式或截断式形成完

全孤立的脉冲体，无法完全打断连续射流[109]。因此，

其脉冲幅值并不是很大。而且，目前对于自振脉冲水

射流的幅值控制并没有系统性、成熟的方法。虽然目

前对脉冲频率的研究较多，而且也有相关的控制方

法[110]。但当脉冲幅值较小时，仅依靠调控脉冲频率不

能有效提高破岩效率。由于理论上的不完善，使脉冲

水射流破岩的研究仍停留在理论研究和实验室阶段，

尚没有在工程上应用的成熟经验。寻求自振脉冲水

射流压力幅值调控方法，建立完善的调控理论，是突

破脉冲水射流工程应用技术瓶颈，实现技术跨越的重

要途径。
 

1.3　空化水射流破岩技术

同脉冲射流一样，空化射流技术也是为了在不提

升射流压力的同时提升射流冲击力发展而来的一种

射流形式。空化现象最早是人们发现船舶螺旋桨在

使用后会产生严重侵蚀，20世纪初，英国工程师首次

提出空化概念，随着技术的不断完善，到 20世纪 80

年代以后逐渐开始研究在石油钻井领域的工程应

用[111-114]。

空化是当液流系统中局部压力低于相应温度下

该液体的饱和蒸气压力时引起液体蒸发而产生的微

气泡 (半径小于 20 μm)爆发性生长的现象。当环境

压力高于饱和蒸气压力时，气泡湮灭[115-117]，湮灭时在

局部区域产生极高的压力和高速射流，产生的微射流

流速能达到 450 m/s。空化射流破岩依靠的正是空化

泡溃灭时产生的极高射流压力[118]，也是这一特性使

空化射流具有比同等条件下普通水射流更强的冲击

力[119-121]。其破岩原理如图 8所示。

 

裂缝

脱体激波

应力波叠加

脉冲射流

内部裂隙拓展

图 6    脉冲水射流破岩机理

Fig.6    Pulsed water jet rock breaking mechanism
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图 8    空化水射流破岩机理

Fig.8    Mechanism of rock breaking by cavitation water jet

由于空化射流只在淹没环境下才能发挥较好的

空化冲击效果，故基于淹没环境，考虑如何能产生更

多的空化泡是提升空化效应的关键，空化射流破岩实

验系统如图 9所示。喷嘴结构设计是形成空化泡的主

要手段，特制的空化喷嘴可有效提升空化泡的数量，从

而提升射流冲击效果[122]。目前空化喷嘴结构主要有

3种，分别为风琴管喷嘴、中心体喷嘴和角形喷嘴[123-124]，

研究发现在喷嘴喉部长度与直径比为 2，喷嘴的扩张

角为 40°时，空化效果最好[125]。此外，为更多地产生

空化泡，有学者提出新型双空化射流[126-127]，相比于传

统的空化射流喷嘴，其设计的新型双空化射流喷嘴能

产生双重空化效果，可获得更大体积的空化云[128]。
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图 9    空化水射流破岩系统[129]

Fig.9    Cavitation water jet breaking system[129]

 

然而，一味追求更多空化泡数量是以牺牲射流冲

击动能为基础的。现有的空化射流喷嘴结构主要为

了产生更多的空化泡，而产生空化泡的同时会导致射

流流场发生波动，使射流冲击力降低。如 1.1节所述，

目前工程常用的水射流喷嘴是为了尽可能获得高冲

击效应的圆锥收敛型喷嘴，因此，依靠牺牲射流冲击

力来提高空化效应的方式并不利于提高破岩效果，空

化射流冲击砂岩效果如图 10所示。
 
 

冲蚀时间240 s 冲蚀时间480 s 冲蚀时间960 s

5 mm 5 mm 5 mm

图 10    空化水射流冲击砂岩[129]

Fig.10    Cavitation water jet impact sandstone [129]

相比于连续射流，空化射流处理硬质材料所需工

作压力大幅度降低、喷嘴和其他高压部件寿命更

长[130]。但空化射流也存在一些问题，空化的产生是牺

牲射流冲击力的结果，并且空化射流只有在淹没条件

下才能发挥出效果[131]。因此，未来对于空化射流的研

究应基于淹没条件下的工程场景，如石油钻井工程等。

此外，空化效应应当基于不减弱射流冲击力的原则上，

作为一种辅助增强射流冲击效果的方法使用。 

1.4　超临界 CO2 射流破岩技术

水射流在硬岩破碎领域应用时存在技术瓶颈难

以突破，能量转化效率低，仍有较大的提升空间。为

此，学者们尝试除水射流之外的射流介质冲击破岩，

以期提高射流能量利用率。相较于水射流，超临界二

氧化碳射流破岩深度是水射流的 1.65～7.85倍，破岩

效果更好，由此，超临界二氧化碳射流破岩技术应运

而生[132]。超临界二氧化碳是二氧化碳的一种特殊状

态，具有黏度低、密度大、渗透性强和表面张力小等特

点[133]。2000年美国 Tempress公司首次提出超临界
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二氧化碳连续油管钻井[134]，2011年中国石油大学王

瑞和教授等建立了国内首套超临界二氧化碳射流破

岩试验装置[135]，开启了超临界二氧化碳向工程应用的

探索。

超临界二氧化碳射流冲击岩石时存在冲击荷

载[132,136]、对煤岩的溶解和萃取[137-138]、相变致裂[139]

等的协同作用。超临界二氧化碳射流冲击破岩初期

以冲击应力波的作用为主，在冲击过程中，由于超临

界二氧化碳低黏度的特点，会逐渐渗透到岩石微孔和

裂隙中，溶解和萃取岩石内部矿物质和有机物，降低

岩石的力学强度。此外，在冲击过程中超临界态的

CO2 产生的相变作用使煤孔隙孔径和累积孔体积继

续增大，使裂缝进一步拓展，破岩机理如图 11所示。
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图 11    超临界二氧化碳射流冲击破岩机理

Fig.11    Mechanism of supercritical carbon dioxide jet impact

rock breakage
 

然而在钻井时间尺度下，超临界二氧化碳是否能

够改变煤体的孔隙结构和力学强度，从而提高冲击破

碎效率和钻井效率尚未可知。目前对超临界二氧化

碳作用煤岩体的研究多集中在长时浸泡条件下 (浸泡

时间 > 24 h)[140]，但笔者团队研究发现[141]短时浸泡下

(浸泡时间 3 min)，超临界二氧化碳仍能对煤基质产生

明显的吸附膨胀和溶解萃取作用，并对煤体裂隙造

成显著影响。此外，为提高超临界二氧化碳射流的利

用效率推动其工程应用，笔者团队提出采用自激振

荡脉冲射流，研制适用于超临界二氧化碳射流的自激

振荡喷嘴结构，发现其高脉冲压力和谐振效应可有

效降低破煤门限压力，提高能量转化效率[142-144]。通

过对脉冲频率的研究，采用位移响应振幅表征谐振效

应，进而改善喷嘴结构，提高了超临界二氧化碳射流

破煤岩的效率，团队所用实验系统设备及破煤效果如

图 12、13所示。

相比于水射流技术，虽然超临界二氧化碳射流技

术具有破煤岩门限压力低、破岩效率高且可避免储层

伤害等技术优势[145-146]。但目前超临界二氧化碳射流

技术在工程上仍未得到推广，主要原因是 CO2 的捕集

与运输成本高，相比水射流等其他钻完井技术，工程

成本高。但超临界二氧化碳射流的低黏度、高渗透性、

溶解萃取和谐振冲击等诸多优势仍使其在未来破岩

领域能够占有一席之地。在攻克 CO2 捕集及运输关

键问题的基础上，充分发挥其多种优势破岩效应，揭

示多效应协同机制，进一步提高射流能量转化效率是

该技术的发展趋势。 

1.5　粒子冲击破岩技术

2003年美国的 PDTI公司受到石油射弹冲击思

想的启发，提出粒子冲击钻井技术 (简称 PID)[147]。作

为一种新型破岩技术，以其操作简便、能量利用率高

等优点在破岩领域得到广泛关注[148]，破岩系统如图 14
所示。
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图 14    粒子冲击破岩系统

Fig.14    Particle impact rock breaking system

粒子冲击破岩技术是采用高速介质加速粒子，高

速粒子冲击岩石，对岩石产生冲击应力波并在岩石内

传播，在冲击应力波的作用下促使岩石原生裂隙扩展、
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图 12    超临界 CO2 实验系统

Fig.12    Supercritical CO2 experimental system
 

图 13    超临界 CO2 破煤效果

Fig.13    Supercritical CO2 coal breaking effect
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新生裂隙生成，当裂隙与临空面贯通时，岩石产生体

积破碎[149-150]，破岩原理如图 15所示。
 
 

原生裂隙扩展

新生裂隙

体积剥落

高速粒子

图 15    粒子冲击岩石裂缝拓展

Fig.15    Particle impact rock fracture expansion
 

粒子冲击破岩技术的破岩能量利用率高、能耗低

并且能使岩石产生大体积破碎，降低了新增表面积及

所需能量，破岩效率高，为常规破岩技术效率的 2～4
倍[151-153]。

然而，现阶段工程活动多基于井下和隧道等受限

空间，井下岩石围压的存在使岩石颗粒之间更加紧密，

抑制了晶间主裂隙扩展区和破碎区的形成，降低了粒

子冲击效果 (图 16)。并且，由于粒子冲击的动力供给

系统和粒子冲击系统是分离的，难以实现整体设备的

井下应用。此外，粒子冲击技术尚未解决受限空间条

件下的连续性冲击问题，因此目前还没有单独在工程

实际中应用的先例。
 
 

靶距25 cm 压力2 MPa 粒子质量13.2 g
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图 16    粒子冲击花岗岩破坏效果

Fig.16    Particle impact granite damage effect
 

总体而言，粒子冲击破岩技术有较高的能量利用

率，能达到 20% 以上[154]，这是其能够广泛推广应用的

重要基础。为适应复杂受限工程施工环境，粒子冲击

技术应简化系统装备，提高施工效率，从而实现低能

耗和高效率的硬岩破碎。 

1.6　炸药爆破破岩技术

炸药是由火药发展而来，限于早期人们的生产生

活方式，当时火药只用于制作爆竹和焰火等，不涉及

大规模工程活动[155-156]。直到 1865年，诺贝尔发明了

雷管，用于引爆硝化甘油，能够产生强大的爆炸威

力[157]，而后炸药爆破技术开始逐步应用于矿山、水力

和交通等领域[158-159]。

炸药爆破就是利用炸药在外界激发冲量的作用

下，瞬间产生高温、高压和高速气体，以极高的功率对

外做功，在爆生气体的准静态作用和爆轰波的动作用

下冲击周围岩体，在极短时间内产生较大范围的岩石

破碎[160-162]。破岩原理如图 17所示，破岩效果如图 18
所示。
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图 17    炸药爆破破岩原理

Fig.17    Principle of rock breaking by explosive blasting
 
 
 

图 18    炸药爆破效果

Fig.18    Explosive blast effect
 

炸药的破岩效率受炸药类型、装药量和装药结构

等的影响[163-164]，如采用 TATP(熵炸药)、PETN(太恩)
相比于 TNT炸药的威力更大。然而，对于炸药性能

评价不只有威力、猛度还有感度和安定性等[165-167]。

若威力高的炸药感度也高，则极易发生爆炸，不利于

运输和储存[168-171]。感度较低，则不容易引爆，特别是

当引爆线路或雷管有问题时，极容易产生哑炮，对后

续工程的安全推进影响较大。在矿山开采等领域，炸

药的安全性必须得到保证，目前对于煤矿使用的炸药，

由于其特殊的工程作业环境 (有瓦斯或矿尘爆炸危险)，
对于炸药的种类有严格限制，只能使用安全性高的煤

矿许用炸药[172-173]。随着对爆破技术的不断研究，我

国的炸药爆破技术也取得了许多重要进展。目前，对

于隧道建设领域，炸药爆破技术已经可以实现精准爆

破，如光面爆破[174-175]。为了实现岩石土方的有序爆
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破，研发了毫秒爆破技术[176-178]。随着对炸药爆破研

究的继续深入，炸药爆破破岩技术开始变得越来越科

学化、专业化，不断向着可控方向发展[179-181]。

炸药爆破破岩技术作为一种高效破岩手段，在交

通和矿山开采等众多领域得到广泛应用，但其本身

存在风险系数高、爆炸时会产生剧烈震动、噪声和

空气污染等缺点而逐渐受到限制 [182-184]。因此，未

来炸药爆破破岩技术应逐步考虑朝着安全性和环保

性等方面发展。为实现高地应力区的破岩，考虑进一

步提升炸药爆破威力，但同时要考虑降低炸药的感

度、提升炸药的安定性和降低哑炮率等方面继续

努力。 

1.7　高压气体爆破破岩技术

高压气体爆破技术是一种物理性的爆破方法，20
世纪 60年代初，美国研究人员尝试利用这种方法进

行煤炭开采，20世纪 70年代，我国学者开始研究该技

术，到 1992年煤科总院首次在平顶山进行爆破实

验并取得成功，之后开始逐渐推广[185]。近些年，随着

相关装备和理论的不断发展，气体爆破技术开始在边

坡治理、开挖等工程中得到应用，装置系统如图 19
所示。
 
 

高压气瓶

压力表
阀门

增压泵

阀门

压力表

岩石

监测器

图 19    高压气体胀裂破岩系统

Fig.19    High pressure gas expansion and breaking systems
 

高压气体爆破技术主要以液氧、液氮和液态二氧

化碳等为原料，通过爆破筒装置将高压气体原料填充

至钻孔底部，依靠诱发装置促使原料产生相变，释放

高压气体，瞬间膨胀产生高压力和高能冲击波，对煤

岩体施加切向拉应力。当冲击应力超过煤岩体的动

抗拉强度时，产生径向裂隙，促使岩石破碎[186-187]。破

岩原理如图 20所示。

相比于炸药爆破方法，高压气体爆破破岩技术具

有更好的环保性和安全性，避免了传统爆破方法中大

量炸药残留和炸药爆炸带来的危险，减少了对周围环

境的影响[188-189]。然而，气体膨胀爆破技术也存在一

些缺点。该技术在爆破煤岩体时，由于单位体积气体

能量密度比炸药小，爆破能力有限，只适用于软岩和

土方的爆破工程 (图 21)，对于硬岩和高围岩等级的岩

体无法产生有效破碎[190-191]，而提高压力，又会使装置

整体安全性降低。此外，针对不同高压气体介质需要

研发配套的储存运输和激化器设备，通用性差。
 
 

俯视图 侧视图

图 21    高压气体胀裂破煤效果[192]

Fig.21    Effect of high-pressure gas expansion cracking coal[192]
 

因此，虽然高压气体爆破技术在破软岩和土方等

具有独特优势，但未来还需要提高单位体积气体能量

密度方面来进一步提升爆破效率，并且需要设计安全

性更高的爆破装置。 

2　热应力破岩技术

依靠热应力破岩的方法具有悠久的历史，截至目

前，学者相继开发了微波破岩、激光破岩、等离子体破

岩、高能电脉冲破岩和液氮射流破岩等多种热应力破

岩技术。 

2.1　微波破岩技术

微波加热技术常见于生活，常作为一种高效加热

的方式被广泛使用。微波，是一种波长为 0.001～1 m，

频率在 0.3～300 GHz的超高频电磁波 [193-194]。1953
年美国科学家 PETER H. Pearse在研究微波辐射对岩

石的作用时，发现微波辐射使岩石内部发生热胀冷缩

效应，从而产生破坏[195]，由此提出微波破岩技术。之

后，各国学者逐渐开展微波技术在破岩领域的研究，

 

高压气体

主裂纹

次生裂纹

密封套管

尖劈作用

激化器

图 20    高压气体胀裂破岩原理

Fig.20    Principle of high pressure gas expansion fracture

breaking rock
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微波破岩系统如图 22所示。
 
 

控制器

微波发生装置

传输管道

岩石

微波

图 22    微波破岩系统

Fig.22    Microwave rock breaking systems
 

微波破岩是将微波作用于岩石，通过将电磁场的

能量传递给岩石，使岩石介质分子反复极化，在物体

内部发生内摩擦，将电磁能转换为热能，使岩石温

度升高，从而导致岩石在内部水分蒸发、成分分解和

膨胀的共同作用下发生破坏 [196]，破岩原理如图 23
所示。
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图 23    微波破岩原理[197]

Fig.23    Principle of microwave rock breaking [197]
 

微波能透过岩石表面进入岩石内部，对岩石内部

物质直接进行作用，实现对岩石的无接触式破坏。其

破岩效率受到微波照射路径和照射方式[198]、岩石的

温度和围压[199]、功率[200]等因素的影响，其中微波照

射功率和岩石内部组成对破岩效率的影响程度较大。

提高微波功率输入，能够提高单位时间作用于岩石的

能量，破岩效率增加。此外，由于岩石内部不同矿物

成分对微波能的吸收程度不同，产生的膨胀热应力不

同，只有在各物质之间产生的热应力超过矿物之间的

黏聚力时，才能使得岩石产生破碎[201-202]，破岩效果如

图 24所示。

微波破岩技术虽然能够对岩石产生无接触式的

块状破坏，但由于其自身的特性，因此也存在一些弊

端。由于微波发生装置复杂，不能适应深部岩土工程

恶劣作业环境。并且由于微波波长短，在照射岩石的

过程中衰减较快，转化于破岩的能量较少。此外，由

于微波作用于岩石时，主要是对岩石中某些成分起作

用，当微波频率与该成分固有频率成倍数关系，产生

共振使岩石产生热应力[204]。增加微波入射能量是提

高热应力和破岩效率的有效途径。因此，如何减少微

波在传输过程中的能量损失，并根据不同的岩石成分

类别确定与之成分相对应的微波作用频率是未来微

波破岩技术的主要的发展方向。 

2.2　激光破岩技术

激光测距、激光雷达、激光武器等为人们所熟知，

激光技术所依据的理论最早来自于爱因斯坦。激光

是通过放射物的受激发射而放大的光，其波长取决于

激发介质[205-206]，一般介于 0.1～1 000 μm。自 1960年

美国西奥多⋅梅曼在加州建造了第 1台可以工作的激

光器开始，国外就逐渐开展对激光技术的应用研

究[207-209]。而后，随着激光技术的不断发展，凭借激光

传输高效率和能量集中等优点，1994年激光技术开始

在破岩等领域进行研究。破岩装置如图 25所示。
 
 

激光光纤

机械臂

喷溅火花

图 25    激光破岩装置[22]

Fig.25    Laser rock breaker[22]

激光破岩是将蕴含巨大能量的激光束照在岩石

表面，在短时间内将岩石局部加热到高温，从而使岩

石破碎、熔化和气化，并通过高速辅助气流将岩石碎

块和熔岩转移到激光作用区域外[210-213]，破岩原理如

图 26所示[214]。
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图 24    微波破岩效果[203]

Fig.24    Microwave rock breaking effect[203]
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图 26    激光破岩作用机理[214]

Fig.26    Mechanism of laser rock breaking action[214]
 

激光参数、岩石性质、激光传递介质和工作环境

几个方面均会会影响激光破岩效率[210,215-218]，但主要

取决于激光功率和作业环境。依靠激光的高照射功

率可在在极短时间内融化岩石，破岩速度快，但由于

岩石本身导热系数极低，因此，相比于微波可在岩石

内传播的特性，激光不能使岩石产生大体积破碎，仅

依靠加热融化岩石破岩，效率低。虽然提高激光照射

功率可以提升对岩石的破坏效果，但提升幅度并不大，

并且随着破坏深度的增加，激光能量利用效率更

低[219-222]，破岩效果如图 27所示。而提高激光照射功

率又会增加系统能耗，不符合低能耗的要求。此外，

激光破岩效果极易受环境影响，对于高粉尘和受限的

采掘工作面，激光在传播过程中容易发生衰减，能量

耗散严重，并且激光设备复杂，并不适用于深部钻井

的巷道掘进，这也是激光破岩技术目前还没有在工程

中广泛应用的主要原因。
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图 27    激光破岩效果[22]

Fig.27    Laser rock-breaking effect[22]

目前激光破岩技术还只在实验室阶段，对于工作

现场的高粉尘、恶劣工作环境，激光传播过程中能量

损耗严重，破岩难度大、效率低[223-224]。如何适应岩土

工程中的受限、恶劣环境，尤其是满足煤矿井下巷道

掘进中对防爆的需求，是激光破岩技术从实验到应用

的关键。根据工程特点，不断改进设备，减少激光传

播过程中的能量损耗，提高作用于岩石的能量转化效

率，降低系统能耗，是激光破岩技术推广应用需要突

破的关键技术瓶颈。 

2.3　等离子体破岩技术

等离子体是除固态、液态和气态之外的第 4种物

质存在形态，整体呈电中性[225](图 28)。根据气体离解

程度的不同，等离子体可分为高温等离子体和低温等

离子体两大类。等离子体技术最初是研究核聚变反

应，到 20世纪 60年代有学者提出利用等离子体的特

性来破岩[226-228]。
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图 28    物质第四态−等离子体

Fig.28    The fourth state of matter - plasma
 

和激光破岩技术相同，等离子体破岩技术也是通

过将热传递给岩石破岩。通过在岩石中通入电流产

生高温等离子体，利用高温高速的等离子弧在岩石

中生成热应力场，当岩石热膨胀应力突破岩石抗拉强

度极限时造成岩石的破碎 [229-231]破岩原理如图 29
所示。
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图 29    等离子体电脉冲破岩机理[231]

Fig.29    Mechanism of rock breaking by plasma electric pulse[231]
 

等离子体破岩速率受击穿电压和岩石内部结构的

影响较大，同一种岩石，输入电压越高越容易发生破坏；

在相同电场强度下，岩石缺陷越大岩石越容易被击

穿[232-233]。等离子体破岩技术在某些情况下可代替爆破，

对环境友好，但是也存在一些缺点。等离子体的生成条
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件较为苛刻，一般人工生成等离子体的方法有核裂变、

核聚变和通入高能电流等，并且等离子体作用范围较

小，只能在两电极之间才能发挥有效作用 (图 30、31)[234]。
目前该技术还处于理论研究阶段，由理论研究到

工程应用的过程中仍有诸多问题需要攻克。最重要

的是提高该技术的工程适用性，简化技术装备，寻求

最适用于该技术工程，提高该技术的成熟度，并逐步

推广。
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图 30    等离子体破岩系统装置[234]

Fig.30    Plasma rock-breaking system units[234]
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图 31    等离子体破岩效果[234]

Fig.31    Plasma rock-breaking effect[234]
  

2.4　高能电脉冲破岩技术

由电子的短时电压改变产生电脉冲[235]，电脉冲技

术最早用于生物、医疗和材料改性等领域[236-237]，20
世纪 80年代俄罗斯科学家首次提出在矿山和隧道中

应用，之后各国开始研究高能电脉冲技术在破岩领域

的应用。

高能电脉冲破岩是利用电能的转化和释放产生

强大的电热效应和应力波，使岩石受到高强度的热应

力作用，从而实现岩石的破碎[238-239]。根据电击穿理

论其破岩过程分为以下几个阶段：首先，在电脉冲的

作用下，电能注入岩石内部并形成少量等离子体；而

后由于电脉冲的反复作用，岩石内部的孔隙被电击穿，

在孔隙处逐渐形成等离子通道，岩石开始产生裂纹；

最后电能持续通过等离子通道，产生大量的热和冲击

力，岩石内部的裂纹逐渐扩大直至破碎[240-242]，破岩过

程如图 32所示。
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图 32    高能电脉冲破岩过程

Fig.32    High-energy electric pulse breaking process
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影响高能电脉冲破岩效率的主要因素有岩石孔

隙度、围压、岩石厚度等。其中，破岩效率会随着岩石

孔隙度的提高而提高，随着岩石厚度和围压的增大而

减小[243-244]。虽然高能电脉冲破岩技术破岩速度快、

不需要刀具配合并且可实现定向破岩，但也存在一些

不足之处。由于电脉冲破岩依靠的是短时高能电击，

作用过程中会消耗极高的电能并释放大量的热，对

设备耐压和耐热性有极高要求。并且由于岩石的导

热性差，依靠电击产生热无法进一步拓展岩石破坏区

域。此外，高能电脉冲技术系统装备复杂，在复杂的

土木施工环境中应用难度较大[245]。破岩效果如图 33
所示。
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CT扫描 三维成像

图 33    高能电脉冲破岩效果[246]

Fig.33    High-energy electric pulse rock-breaking effect[246]
 

目前，高能电脉冲破岩技术还处于理论研究阶段，

尚无工程应用先例。主要原因在于其较高的能耗和

复杂的电脉冲发生装置。但电脉冲较强的穿透性能

和较高的能量转化效率使其具备推广应用的重要前

提。简化电脉冲发生装置，提高该技术的工程适用性，

进一步降低系统能耗是该技术主要的发展趋势。 

2.5　热力射流破岩技术

火焰喷枪、导弹推进和火箭发射等均是采用燃料

与氧化剂混合燃烧产生高温高压射流并以此作为能

量或动力源。20世纪 80年代，在石油钻井领域研究

岩石热裂解的破岩方法时[247-250]，提出采用射流与岩

石热裂解共同作用的热力射流破岩技术，以期实现较

高的钻井效率[251-252]。早期的热力射流采用空气燃烧

火焰进行破岩，但空气本身携带的热量有限且密度低，

破岩效率并不高[253]。之后，开始采用高温超临界水为

介质[254-255]，在超临界水环境下，燃料和氧气发生氧化

反应形成火焰，不仅可以实现均相氧化[256-257]还能够

携带更多的热量和更强的携岩清岩能力，大幅提高破

岩效率。

热力射流钻井技术通过采用不同管路，向深孔内

分别注入燃料、氧化剂和水，而后控制井下点火装置

引发燃料与氧化剂发生反应，生成大量的热，此时，在

一定地层深度状态下，控制地面泵压，可使得反应腔

内部的水处于超临界态 (温度大于 374.3 ℃，压力大

于 22.1 MPa)，燃料、氧气和水实现完全混相，加速燃

料与氧气的氧化过程[258]，系统装置如图 34所示。反

应生成的高温介质作用于井底岩石，诱使岩石产生热

裂解，在生成裂隙的同时通过射流的尖劈作用进一步

拓展裂隙，最终实现高效的钻进[259-261]，超临界水热火

焰如图 35所示，破岩原理如图 36所示。然而，前期

基于流体热开裂技术的研究，主要侧重利用岩石热开

裂效应破碎岩石，缺少对高温射流冲击力和热应力耦

合作用下岩石破碎机理的研究。2013年中国石油大

学首次提出将水射流冲击作用与岩石热裂解效应相

结合的热力射流破岩技术，并对高温射流调制特性、
 

燃料

氧化剂
连续管

冷却水

图 34    热力射流破岩系统[263]

Fig.34    Thermal jet rock breaking system [263]

 

着火 熄火

图 35    超临界水热火焰[255]

Fig.35    Supercritical hydrothermal flame [255]
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比能特性等开展了研究[262-264]，为热力射流破硬岩技

术提供了一定的理论支撑。

考虑射流冲击效应与热裂解效应耦合作用岩石

的热力射流破岩技术能够兼具射流冲击效应与岩石

热裂解效应的优势，因此在破硬岩领域具有广阔的发

展前景。目前，学者们也对两者的耦合作用机理进行

了一些研究并取得一定研究成果，包括门限温度和门

限热流密度等[257,264]。但目前对于热力射流破岩技术

还处于理论研究阶段，射流冲击作用与热裂解作用的

耦合机理还需要明确。未来要实现该技术的工程应

用，还需要进一步深入研究在超临界水作用下的岩石

热裂解效应与射流冲击效应对岩石破坏效率之间的

影响关系，明确射流冲击参数、岩石特性等对热力射

流破岩效果的影响。 

2.6　液氮射流破岩技术

液氮是指液态的氮气，常压下液氮的沸点为−196 ℃，

21 ℃ 时液氮体积可膨胀约 700倍[265]。20世纪 80年

代科学家和工程师提出利用液氮的骤冷特性在岩石

内产生较高的温度应力使岩石破碎。

不同于激光、微波等技术采用高温作用岩石的方

式，液氮射流破岩依靠超低温特性产生低温应力并伴

随着液氮相变的体积膨胀和射流冲击效应共同作用

下使岩石破碎[266]。低温条件下，岩石的内部水分凝结

导致体积膨胀能促进岩石产生裂隙，并且岩石中的某

些物质低温条件下硬化，使岩石强度进一步降低，破

岩原理如图 37所示。

液氮射流冲击破岩技术在应用时可以减少设备

的热损伤且对环境友好，因此在硬岩破碎工程中更具

有优势。例如在石油钻井工程中，结合射流高速冲击

与低温特性，在深部热岩表面产生超高的温度应力使

岩石产生高效破碎[267-268]，系统装备如图 38所示，破

岩效果如图 39所示。

然而，由于液氮受环境影响大，如何保持液氮的

物理形态是实现其高效破岩的关键。特别是应用于

深部地层时，超长钻孔导致运输过程中维持液氮的物

理形态十分困难，导致工程成本较高。此外，液氮增

压过程中容易使设备产生霜冻，同时液压油在超低温

环境下会固体化难以使用，对增压设备提出了更高的

要求[269-270]。

虽然液氮射流具有热应力、冲击和相变等多种优

势破岩效应，具备高效破岩的条件，但由于液氮射流

制备系统对温度条件要求较高，导致工程成本高，工

程应用前景仍不乐观。在液氮射流破岩的基础上，进
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高温射流

花岗岩

裂缝

热应力

图 36    热力射流破岩原理

Fig.36    Principle of thermal jet rock breaking
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图 37    液氮射流破岩原理

Fig.37    Liquid nitrogen jet rock breaking principle
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图 38    液氮射流系统

Fig.38    Liquid nitrogen jet system
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图 39    液氮射流冲击不同温度岩石效果[267]

Fig.39    Effect of liquid nitrogen jet impingement on rocks of

different temperatures[267]
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一步解放思路，利用低温氮气破岩是解决目前液氮射

流破岩固有问题的可行性思路。借鉴高压空气的制

备技术，实现对低温氮气的压缩和升压，充分利用低

温氮气热应力和冲击力，是提高该技术工程适用性的

基础。 

3　冲蚀磨损破岩技术

为解决热应力破岩方式的高能耗、适用性差以及

传统水射流超高压、能量利用率低等难题，综合射流

冲击作用与磨料冲蚀磨损的优势，以冲蚀磨损破岩为

主要方式的磨料水射流、脉冲磨料水射流和磨料空气

射流等技术相继被提出，形成一系列工艺简单、高效

的破煤岩方法。 

3.1　磨料水射流破岩技术

磨料水射流技术最早由美国工程师 RAYMOND
E. Frenzel提出，主要用于抛光、切割等领域。随着技

术的不断成熟，20世纪 80年代开始应用于岩石切割。

该技术是一种利用高速水射流携带磨料颗粒运动，使

磨料颗粒具有足够的冲击动能，通过磨料的磨削作

用实现对硬质材料的有效切割 [271-273]。破岩原理如

图 40所示。
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拉应力 剪应力 压应力 拉应力剪应力
径向裂纹

侧向裂纹

微裂纹

水射流

磨料颗粒

图 40    磨料水射流破岩原理

Fig.40    Abrasive water jet rock breaking principle
 

根据磨料与水混合方式的不同，磨料水射流可分

为前混合式和后混合式。后混合磨料水射流主要是

利用高速水流动时在混合腔内产生的负压将磨料颗

粒吸入混合腔，然后通过混合腔将高速水流与磨料颗

粒进行混合后经喷嘴喷出[274-275]。相比纯水射流，磨

料水射流能够在相对较低射流压力条件下对煤岩体

进行破坏。但由于后混合磨料水射流磨料混合时间

短，磨料不能全部进入射流核心段，导致磨料加速不

充分。因此，后混合磨料水射流仍需要较高的射流压

力 ( > 100 MPa)才能有效切割硬质材料[276-277]。系统

压力的提高，不仅增大了能耗，也对系统的安全性和

可靠性提出了更高的要求，不利于在深部资源开采中

的应用。

前混合磨料水射流是在高压管道内进行充分混

合并得到初步加速，并在喷嘴内部和射流核心段得到

充分加速，磨料能够在较低的射流压力下获得较大的

速度，切割性能相比后混合射流更强，系统如图 41所

示。相同输入能量条件下 2者切割深度的比例关系

相差 10倍以上[278]。且由于其是在喷嘴前部混合，其

工程适用性更广，尤其在隧道、巷道和钻孔等受限空

间内破岩时，只能采用前混合磨料水射流，破岩效果

如图 42所示[279]。但由于前混合磨料水射流磨料罐承

压水平与系统压力相同，磨料的连续均匀供给是决定

该技术破岩效率的关键[280-281]。虽然学者提出了双罐

并联解决连续供给问题，但磨料的均匀供给仍然是限

制该技术广泛应用的关键因素之一。在不提高射流

压力的前提下，精准控制磨料质量流量是有效提高破

岩效率的重要方法。
  

水箱
阀门

增压泵
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压力表 阀门

喷嘴

图 41    前混合磨料水射流破岩系统

Fig.41    Pre-mixed abrasive water jet rock breaking system
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图 42    磨料水射流破岩效果[279]

Fig.42    Abrasive water jet rock breaking effect[279]
 

虽然磨料水射流具有较高的破岩效率，但在实际

破岩工程中并没有得到广泛应用。除了磨料连续均

匀供给问题外，磨料对设备的磨损也是限制其应用的

关键[282]。尤其在深长钻孔内，磨料不仅容易堵塞喷嘴，

而且由于磨料在钻具内运行时间长，对钻具磨损较大，

尤其对水辫、切缝器等旋转密封部件磨损尤为严重。

综上所述，相比后混合磨料水射流，前混合磨料

水射流磨料利用率高，能量转换效率更大，适用性更

广。但前混合磨料水射流技术并没有在深部资源开

采领域广泛推广应用的根本原因在于磨料的连续均

匀供给问题并未得到解决。因此，在不提高射流压力

的前提下解决磨料稳定连续供给，并提高磨料动能的
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转化效率是实现前混合磨料射流在深部资源开采中

进一步推广应用的关键。

虽然磨料水射流相比于纯水射流极大地增加射

流的冲击破碎能力，减少水的消耗量，降低射流系统

压力。但磨料无法回收，造成破岩成本增加，且增加

了喷嘴的磨损，减少了使用寿命。因此进一步提升装

备耐压等级和可靠性是磨料水射流的主要发展趋势。 

3.2　脉冲磨料水射流破岩技术

脉冲磨料水射流是在磨料水射流的基础上，为进

一步增强磨料水射流破岩能力而提出的一种射流技

术[283]。国内最早由李晓红院士提出脉冲磨料水射流，

采用 Helmhotz式自激振荡脉冲喷嘴产生自激振荡脉

冲磨料水射流[284]。该技术能够产生较大的瞬时冲击

能量，通过水锤效应与磨料冲蚀磨损效应共同对岩石

产生效果，可进一步提升破岩效率[285]。破岩原理如

图 43所示。

相比于磨料水射流，脉冲磨料水射流能够产生较

大水锤压力，弱化水垫效应。提高射流压力的同时，

增强了水锤压力作用效果，破岩效率更高。但射流

的脉冲特征并不利于磨料加速。磨料速度源于水射

流对磨料的持续加速过程。相比于连续射流，脉冲

射流单脉冲体形成−发展−消散过程较快，边界层发

展充分。虽然能够获取瞬时高压，但由于加速时间较

短，并不利于磨料的持续加速，从而无法形成高速磨

料[59,286]。

为提高脉冲磨料水射流磨料冲蚀能力和工程适

用性，笔者团队提出了预混合脉冲磨料水射流 (图 44)，
通过预先将磨料与水在开放环境中充分混合，利用液

固两相柱塞泵，对磨料和水同时进行加压，经过管道

从喷嘴喷出，形成磨料水射流，通过调节柱塞频率控

制射流脉冲，形成脉冲磨料水射流。由于磨料与水混

合阶段较前混合磨料水射流更为提前，磨料混合均匀，

且磨料与水同时加速，实现了磨料高速喷射。不仅如

此，磨料与水在开放环境中混合，解决了磨料连续供

给问题，大幅提高了磨料水射流的工程适用性[30,287]。

破煤效果如图 45所示。
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加压系统
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图 44    预混合脉冲磨料水射流系统装置

Fig.44    Pre-mixed pulsed abrasive water jet system units
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图 45    前混合磨料水射流与超前预混合脉冲磨料水射流破岩效果对比

Fig.45    Comparison of rock-breaking effect of pre-mixed abrasive water jet and over-mixed pulsed abrasive water jet
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图 43    脉冲射流破岩机理

Fig.43    Pulsed jet rock breaking mechanism
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与脉冲水射流相同，脉冲磨料水射流的脉冲特征

同样具有弱水垫、谐振冲击等作用。由于两相射流流

动的复杂性，对于上述特征的研究并不充分，其优势

破岩效应也未得到充分利用。相比连续磨料水射流，

充分发挥脉冲水射流的优势效应，构建多效应的协同

机制，是进一步提高磨料水射流能量转化效率，实现

高效破岩的重要基础。 

3.3　磨料空气射流破岩技术

19世纪初，美国工程师发现在空气射流中添加颗

粒可以有效磨削材料和金属抛光。到 1991年，荷兰

的飞利浦研究室将该方法改进为微磨料气体喷射处

理技术。自此，该技术在硬、脆性材料的微加工领域

逐渐成熟[288-289]。因其高效低耗、工艺简单优点，逐渐

被应用于其他领域。2013年，作者团队首次将磨料空

气射流技术用于煤层卸压增透和辅助机械硬岩掘进。

该技术以压缩空气为动力源，在优化设计的喷嘴结构

下，以较低的空气压力使射流达到超声速，超声速气

流带动磨料加速，使之具备较高的冲击动能。在射流

冲击应力波效应和磨料冲蚀磨损效应的协同作用下，

对煤岩体产生破坏[290-291]。破岩系统如图 46所示，破

岩原理同磨料水射流 (图 40)。
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图 46    磨料空气射流破岩系统

Fig.46    Abrasive air jet rock breaking systems
 

使空气射流达到高超声速是加速磨料并实现高

效破岩的重要基础。喷嘴结构是决定空气射流流速

的关键。传统空气射流喷嘴多采用亚声速喷嘴，如鸭

舌型喷嘴，不能很好地控制流场结构和射流速度，严

重制约了射流冲击效果。Laval喷嘴结构[281,292-293]可

以在较低气压下获得超声速射流。通过设计 Laval喷
嘴收缩段和扩展段曲线，可以控制空气射流膨胀和压

缩状态，实现空气射流的高超声速喷射。作者团队采

用膨胀比统一了影响喷嘴结构设计的诸多因素，提出

在 Laval膨胀比为 1.12时，射流流场最稳定，射流具有

较长的等速核，射流加速效果最佳，射流速度可高达

900 m/s[294-296]。团队基于 Laval喷嘴结构，以 30 MPa
的空气压力冲击煤体，能对煤体产生较强的冲击应力

波效应，使煤体产生体积破碎。基于此，为进一步提

升破煤岩效率，提出磨料空气射流破煤岩理论与技术，

充分利用空气射流的高超声速加速磨料，使磨料具有

高冲击动能。在射流冲击应力波效应和磨料冲蚀磨

损耦合作用下，能够实现煤岩体的高效破碎。定点冲

蚀花岗岩效果如图 47所示。
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图 47    磨料空气射流定点冲蚀花岗岩

Fig.47    Abrasive air jet fixed point erosion of granite
 

但较高的射流压力限制了该技术的推广应用。

为提高磨料空气射流的技术适用性，作者团队进一步

优化喷嘴结构，实现了在低于 2 MPa的空气压力条件

下，空气射流速度达到 800 m/s以上的高超声速，并将

磨料加速至超声速，实现了和高压条件下相同的加速

效果，提高了技术工程适用性[29,297]。通过系统地分析

射流压力、磨料质量流量、磨料粒径、磨料硬度和磨

料密度等因素对破煤岩效果的影响，发现磨料质量流

量和磨料硬度是影响破煤岩效果的重要因素[298-299]。

相比于提高压力，控制磨料质量流量能够更有效地提

高破煤岩效果。合适的质量流量不仅使磨料得到充

分的加速，而且将砂垫效应弱化到最低，能够实现能

量转化效率的最大化[300-301]。硬度较高的磨料在冲击

过程中，由于磨料自身很难发生破碎，提高了能量转

化效率，是提高破煤岩效果的有效手段。

在最优射流参数条件下，尽可能地提高气固两相

能量转化效率，以实现低压磨料空气射流技术在破岩

工程中的应用。基于此，团队着手将磨料空气射流技

术与刀具技术相结合，采用磨料空气射流预切槽的方

式辅助机械掘进。实验结果表明，采用磨料空气射流

技术切槽卸压能明显降低整机功率和刀具受力，工程

效益明显。然而，在移动条件下，采用传统圆形截面

喷嘴结构粒子易发散，限制了岩石切槽效率。为增强

移动条件下的切槽能力，团队突破了传统圆形断面喷
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嘴结构，提出基于 Laval喷嘴结构的新型矩形断面喷

嘴结构，如图 48所示。该结构条件实现了磨料颗粒

的切向集中分布，使单位时间内更多的磨料用于切割

岩石，从而获得更高效的硬岩切槽效果，实验切槽效

果如图 49所示 (实验所用花岗岩单轴抗压强度为

175 MPa)。
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图 48    基于 Laval基本结构的矩形截面喷嘴

Fig.48    Rectangular cross-section nozzle based on

Laval basic structure
 
 
 

图 49    移动条件下低压磨料空气射流切割花岗岩

Fig.49    Low-pressure abrasive air jet cutting granite under

moving conditions
 

低压磨料空气射流技术作为新型的无刀具破岩

技术为破硬岩技术发展提供了一种新思路。满足了

硬岩高效切槽、低能耗和降低整机功率等要求。目前，

笔者团队做了大量研究工作[26-29,295-299]，从探究磨料空

气射流破岩过程和破岩机理，到揭示磨料空气射流破

煤岩规律，最后建立磨料空气射流破岩理论体系，实

现了从理论到工程应用的重大跨越。 

4　非刀具破岩技术发展趋势

目前已有的非刀具破岩技术在资源开发、市政工

程等工程领域发挥了重要作用。如磨料水射流破岩

是石油钻井射孔的重要技术手段，水射流破煤是煤层

卸压增透的主要技术方法。但对于高地应力、高地温

和坚硬岩石，现有非刀具破岩技术仍存在诸多短板。

与刀具破岩技术相比，破岩效率低和能耗高是遏制水

射流应用的主要原因，远远不能达到工程需求。尤其

以热应力为主的破岩技术无法适用高粉尘、受限空间

等恶劣施工环境。在极端复杂的深地储层中，当刀具

破岩技术无法实现岩石破碎时，探索新型的非刀具破

岩技术或为解决深地资源开采工程中岩石高效破碎

难题提供一种解决办法。然而，在未来较长一段的时

间内，刀具破岩技术仍然是主要的破岩方式，无刀具

破岩方式考虑作为一种辅助机械钻进方法进行使用。

此外，为了充分发挥现有无刀具破岩方法的技术优势，

可将现有非刀具破岩技术进行搭配组合，作为推动实

现深部硬岩有效掘进的一种手段。例如，在硬岩隧道

掘进时，采用传统机械刀具破硬岩，刀具磨损严重，而

采用无刀具破岩技术的组合破硬岩，可以避免刀具破

岩技术瓶颈，实现对硬岩隧道的高效掘进。以磨料空

气射流技术与粒子冲击技术组合破硬岩，首先采用磨

料空气射流技术按照预定切缝参数 (槽深、槽间距)分
割隧道掘进工作面，产生临空面的同时卸除围岩压力，

提高粒子冲击破岩效果。而后采用粒子冲击装置对

分割的隧道掘进工作面进行冲击，使隧道掘进工作面

上岩石产生大块碎块，能够产生更小的岩石破碎比表

面积，如图 50所示。更小的岩石破碎比表面积意味

着更低的破岩比能耗，这也是无刀具破岩组合破岩的

优势所在。无刀具破岩技术的组合条件下，破硬岩效

率高且相比于纯机械刀具破岩技术和单一无刀具破

岩技术，比能耗更低、适用性更强。因此，未来充分发

挥无刀具破岩技术的技术优势，构建以射流切缝卸除

高地应力、粒子冲击体积破碎坚硬岩体的破岩理念，

最大限度降低岩石破碎能耗，简化系统装备，推动实

现岩石破碎技术向非刀具化发展。
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图 50    粒子冲击耦合磨料空气射流隧道掘进

Fig.50    Particle impact coupled abrasive air jet tunnel boring
  

5　总结与展望

将无刀具破岩技术归纳为以动载荷冲击破岩、热
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应力和冲蚀磨损为主的 3类技术体系，系统分析了水

射流、激光和磨料空气射流等 16种岩石破碎技术，总

结出以动载荷冲击为主的破岩方式，采用粒子冲击和

超临界二氧化碳射流是较为高效的方式，可以对岩石

产生大体积破碎。而传统高压水射流其工程应用广

泛，但其在破岩时单位体积岩石破碎能耗较高，水射

流破岩比能耗为刀具的 40～70倍，尤其在高地应力

硬岩隧道，需要提供极高的射流压力 ( > 200 MPa)，使
能耗进一步增大，不满足低碳要求。以热应力作用为

主的非刀具破岩方式，整体钻速高、破硬岩速度快，但

也存在一些不足，其破岩效率受环境影响大，对于钻

井、隧道掘进等受限和恶劣的作业环境不能适用。因

此，目前以热应力为主的破岩方式还没有进行工程应

用的实例。以冲蚀磨损为主的破岩方式，其对硬质材

料的高效切割能力使得该技术在金属加工、表面处理

和煤层卸压增透中广泛应用。而磨料射流技术虽然

可以高效破硬岩，但不能产生大体积破碎，仅能够进

行切槽卸压，因此在单独应用时并不能促进岩石开挖

工作面的整体推进。现阶段，随着深地战略的实施，

为解决深地极端地质条件下岩石破碎难题、简化系统

装备、降低系统能耗，提出多种非刀具破岩技术协同

破岩的思路，充分发挥不同非刀具破岩的技术优势，

以高效切缝卸除高地应力与粒子冲击体积破碎坚硬

岩体的破岩理念，最大限度降低岩石破碎能耗，简化

系统装备，为岩石破碎技术向非刀具化发展提供理论

支撑。虽然未来一段时间内，岩石破碎仍是以机械破

岩方式为主，但随着无刀具技术的不断完善和相应装

备的研发，亦有望实现隧道开挖或深部煤岩巷道掘进

的无刀具化，改变现有刀具隧道掘进方式，从而实现

更加经济、更加高效的岩土工程施工工序和工法。
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