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Mechanical and molecular structure essence of deformation differences in
organic macerals of tectonically deformed coal
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Abstract: The heterogeneity of coal microdeformation has a significant impact on the occurrence and migration of coal-
bed methane, and the difference in organic maceral deformation is the key to analyzing coal microdeformation. To date,
there are few studies on the inner relationship between the deformation differences of organic macerals and their mechan-
ical properties and molecular structure. Therefore, based on the study of the deformation differences among organic ma-
cerals in tectonically deformed coal, this study verified the deformation law of organic macerals under the in-situ temperat-

ure and stress through the physical simulation experiments involving high-temperature and high-pressure deformation of
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primary structure coal. Combined with the test results of in-situ nanomechanical parameters and molecular structure char-
acteristics of each organic maceral, this study reveals the mechanical basis and molecular structure essence of the deforma-
tion differences in organic macerals of tectonically deformed coal, as follows. Exinite has the lowest hardness, elastic
modulus, and maximum creep displacement because its molecular structure is loose with low stability and the minimum
stress resistance, thus, exinite tends to produce ductile bending deformation under tectonic stress. The molecular structure
of vitrinite is relatively tight with higher stability and larger stress resistance, thus, vitrinite has higher hardness, elastic
modulus, and smaller creep displacement, and easily appears to brittle fracture deformation under stress. In comparison,
the molecular structure of inertinite is the most compact with the highest stability and maximum stress resistance, and in-

ertinite shows the highest hardness, elastic modulus, and minimum creep displacement, so that inertinite has weaker brittle

fracture deformation than vitrinite under the same tectonic stress.
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Fig.1 Geological map of the study area (Modified according to Reference [1])
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Fig.2 Macro- and micro-deformation characteristics of primary structure coal and tectonically deformed coal
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Fig.3  Structure diagram of coal high-temperature and high-pressure deformation experimental system
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Fig.4 Process for acquiring micrographs of experimentally deformed coal
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Fig.5 Location of nanoindentation within various organic macerals
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Fig.6 Load application process and the corresponding load-displacement curve for the indenter
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Fig.10 Indention images of each organic maceral
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Fig.11 In-situ nano-hardness and elastic modulus of each organic maceral
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