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Abstract: Long pressure short extraction ventilation and dust removal method is one of the effective methods for remov-
ing high mass concentration dust in the excavation area of coal mine comprehensive heading face. Especially, the local

flow field generated by the combination of pressure and suction is conducive to the removal and reduction of respiratory
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dust. However, the dynamic changes in the location of dust production sources have an unclear impact on the dust remov-
al performance of this method. By considering the movement paths and reciprocating times of the dust source location in
both horizontal and vertical directions, four dust source movement paths were designed based on the long pressure short
extraction test platform. Combined with the regulation of the parameters of the long pressure short extraction ventilation
system, the impact of the dust source on the spatial dust mass concentration, particle size mass concentration, and particle
size distribution under different movement conditions was tested and analyzed. The results show that under the same vent-
ilation parameters, the dust mass concentration caused by the horizontal path on the respiratory belt positions of drivers
and pedestrians is lower than that caused by the vertical path. In the horizontal path, when the pressure air duct is located
on the side near the exhaust duct and the pressure air outlet is located in an area about 1 m in front of the driver, the
particle size mass concentrations of PM,, PM, 5 and PM, at the breathing zone between the driver and pedestrian are the
lowest, and the ventilation and dust removal effect is the best. The diffusion of spatial dust is manifested as: particles with
a particle size less than 2.5 pm are easily collected and removed by the exhaust flow field at the exhaust port, while the
particles with a particle size greater than 10 um will escape from the dust generation source and exhaust area to the driver
and the area behind them, and mainly settle naturally. Based on the optimal dust source movement path and ventilation
parameters obtained from preliminary experiments, on-site experiments were conducted on the 2304 fully mechanized
heading face of a coal mine in northern Shaanxi. The results show that the total dust mass concentration at the driver's pos-
ition and pedestrian breathing zone position under the lateral path decreased to 85.6 mg/m’ and 21.9 mg/m’, respectively,
with the highest dust reduction rate reaching 76.9%. The mass concentration of respirable dust decreased to 15.3 mg/m’
and 10.5 mg/m’ respectively, with a maximum dust reduction rate of 85.2% and the dust removal performance was signi-

ficantly improved.
Key words: long pressure short extraction; fully mechanized driving face; dust source location; dust mass concentra-
tion; particle size distribution
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