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Abstract: Driven by global climate change and the “dual carbon” goals, the efficient development and safe storage of
deep carbon storage spaces have emerged as a critical pathway to achieve carbon neutrality. This paper systematically re-
views the exploration technologies, site suitability evaluation methods, and key theoretical challenges for large-scale car-
bon storage in deep saline aquifers, depleted oil and gas reservoirs, unminable coal seams, and basalt formations. The
study reveals that multiphysical field coupling effects (thermal-fluid-mechanical-chemical) induced by CO, injection may
trigger risks such as fault activation, caprock leakage, and seismic activity, necessitating the construction of a risk assess-
ment framework through multiphysical field numerical simulation and dynamic monitoring. Deep saline aquifers account
for 98.64% of China’s theoretical carbon storage potential, but their significant heterogeneity requires suitability evalu-
ation that integrates geological stability (fault development, caprock sealing capacity) and storage capacity (porosity, per-
meability) to construct a multi-scale index system. Methods such as the analytic hierarchy process (AHP), GIS, and ma-
chine learning are combined to optimize site selection decisions. To address the complexity of deep carbon storage spaces,
integrated seismic and electrical exploration technologies significantly improve reservoir identification accuracy: full-
waveform inversion (FWI) characterizes pore-fracture structures, gravity-magnetic inversion constructs deep structural
models, and multiphysical data fusion reduces the non-uniqueness of inversion results. In the context of green transforma-
tion in coal mines, the innovative “negative carbon backfilling” technology is proposed: CO, is used to mineralize industri-
al solid wastes such as steel slag and fly ash to prepare backfilling materials, achieving high carbon sequestration rates
while balancing ecological restoration and dynamic disaster prevention. The synergistic effect of CO, storage in deep un-
minable coal seams and enhanced coalbed methane (ECBM) recovery is significant, requiring optimization of the full-life-
cycle management model for “fracturing-displacement-storage”. CO, storage in goafs faces challenges from the complex
seepage-adsorption mechanisms in fractured coal-rock masses, necessitating the development of multiphase dynamic mod-
els to assess storage potential in free, adsorbed, and dissolved states. Potential calculation methods vary significantly by
reservoir type: Saline aquifers use the storage mechanism method (coupling structural trapping, dissolution, and mineraliz-
ation), depleted oil and gas reservoirs combine material balance methods with numerical simulation, and coal seams rely
on adsorption capacity and displacement efficiency evaluations. In terms of injection technology innovation, micro-nano
bubble injection enhances CO, dissolution rates, while the “water-mixed dissolved-state injection” mode in basalt forma-
tions achieves high mineralization rates. Future research must emphasize interdisciplinary integration: Developing intelli-
gent multiphysical field exploration and fine imaging to overcome challenges in detailed characterization of multi-type
three-dimensional carbon storage spaces; researching and developing high-efficiency deep negative carbon backfilling ma-
terials and technical equipment; and constructing a comprehensive system for calculating CO, storage potential and evalu-
ating suitability in deep integrated three-dimensional spaces, form technical standard systems and information decision-
making platforms, and provide theoretical and engineering support for large-scale geological storage under the “dual car-

bon”goals.
Key words: deep carbon storage spaces; multiphysical field coupling; geological evaluation; exploration technologies;
carbon sequestration
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Fig.1 Schematic diagram of high-pressure CO, storage interaction with geological environment causing caprock

leakage and fault activation
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Fig.4 Schematic diagram of technical principles for carbon-negative backfilling materials in deep mining-induced space
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Fig.7 Effect of geological storage, migration and solidification of CO, in mining-induced space
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Fig.9 Multifield and multiphase (CO,, water, gas, coal and rock) coupling mechanisms of carbon sequestration in deep mining space
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Table 1 Calculation formulas for potential of multi-type carbon storage spaces
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