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Abstract: The 10 m ultra-large mining height of Caojiatan Coal Mine is a world’s first in terms of single mining height
and mining intensity, and the effective control of surrounding rock in the stope is crucial for safe and efficient mining at
the working face. Based on the analysis of the coal seam occurrence conditions and the characteristics of the ground pres-
sure behavior of the already mined faces, and considering the ultra-large mining space and the ultra-high coal wall charac-
teristics of the working face, the difficulties in controlling the surrounding rock of ultra-large mining height were clarified.
A “superimposed arch-beam” structural model for the ultra-large mining height stope was established, and a three-in-one
surrounding rock control strategy of “active support protection + regional pressure relief weakening + comprehensive
monitoring and early warning” was proposed, verifying the effectiveness of the surrounding rock control for the 10 m ultra-
large mining height. The research shows that: the occurrence characteristics of multi-layer thick and hard roofs cause ab-
normally strong mine pressure manifestation at the working face, with large-area hanging roofs during initial mining and
significant strong dynamic loading pressure at the working face during normal mining. The keys to controlling the sur-
rounding rock in the 10 m ultra-large mining height stope are reducing the pressure step distance, weakening the dynamic
loading pressure, preventing rib spalling, and preventing the working face from being crushed by the pressure. The
“double-layer telescopic beams + three-stage rib protection” structure of the hydraulic support achieves independent opera-
tion for the protection of the empty roof in front of the support and the ultra-high coal wall, solving the problem of incom-
plete rib protection by the original split-type rib protection. The high initial setting force and high working resistance of the
hydraulic support significantly reduce the risk of rib spalling and roof caving at the working face and effectively control
the roof subsidence during the pressure period. The underground deep-hole 5.0 m*/min high-flow directional fracturing
weakening technology achieves weakening of the multi-layer thick and hard roofs, effectively reducing the intensity of
mine pressure at the working face, controlling the amount of rib spalling and significant roof subsidence during the pres-
sure period, and preventing the working face from being crushed by the pressure. Comprehensive monitoring and early
warning effectively ensures the support efficiency of the support during mining, realizing real-time tracking of roof frac-
ture and real-time analysis of strong mine pressure. The problems of large-area hanging roofs and small hurricanes during
the initial mining of the ultra-large mining height working face have been resolved. The initial pressure step distance is
49.35 m, the pressure duration distance is 5.75 m, and the opening ratio of the safety valve of the support column is
24.81%. The manifestation of mine pressure during the periodic pressure period has been significantly alleviated. The av-
erage shrinkage of the hydraulic support column has decreased from 0.48 m to 0.32 m, a decrease of 33.3%, and the max-
imum shrinkage has decreased from 1.88 m to 1.44 m, a decrease of 23.4%. The proportion of the average dynamic load
coefficient of the working face periodic pressure greater than 1.5 has decreased from 39.6% to 14%. During normal pro-
duction at the working face, rib spalling is within a controllable range, with the amount of rib spalling concentrated at
0.2—0.5 m. The research results have important guiding significance for the control of surrounding rock in ultra-large min-
ing height mining.

Key words: 10 m super large mining height; strata behavior law; hydraulic fracturing; surrounding rock control; dis-
aster prevention
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Fig.19 Schematic of deep hole fracturing weakening roof in

underground area
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Fig.22 Layout of fracturing boreholes during normal mining
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Fig.25 Energy distribution diagram of working face roof fracture
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