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Abstract: The insulation state of the mine cable plays an important role in the stable operation of the mine power supply
system. Partial discharge on-line monitoring is an important means of cable insulation state monitoring. Aiming at the

problems that the mine cable partial discharge signal is easily submerged in the field white noise and periodic narrowband
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interference, and the adaptability of the noise reduction method is generally not strong, a partial discharge denoising meth-
od based on multivariate variational mode decomposition and improved wavelet threshold is proposed. Firstly, the minim-
um average envelope entropy is used as the fitness function, and the sparrow search algorithm is used to realize the auto-
matic optimization of the decomposition mode number and penalty factor of multivariate variational mode decomposition.
Secondly, the kurtosis value of each intrinsic mode function is calculated, and the partial discharge dominant component
and the noise dominant component are distinguished. Using the characteristics of Wiener filtering that can adaptively ad-
just the filtering effect through local variance, the partial discharge characteristic signal in the partial discharge dominant
component is accurately extracted. The partial discharge characteristic signal is classified as gross error by 3¢ criteria, and
the Gaussian white noise and narrow-band interference signal in the noise dominant component are inversely suppressed.
The partial discharge dominant component and the noise dominant component are reconstructed to obtain the partial dis-
charge reconstruction signal. Finally, the exponential decay wavelet threshold function is constructed, which can quickly
approximate the hard threshold function on the basis of overcoming the discontinuity of the hard threshold function and
the constant deviation of the soft threshold function. The new improved wavelet threshold algorithm is used to denoise the
partial discharge reconstruction signal, and the partial discharge denoising signal is obtained. The proposed method is
compared with several common methods. The results show that the proposed method has a good noise reduction effect on
the simulated partial discharge signal and the measured partial discharge signal, and the operation efficiency of the al-

gorithm is good.
Key words: PD denoising; multivariate variational mode decomposition; wavelet threshold; kurtosis; sparrow search
algorithm
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Table 4 Noise-reduced performance evaluation of different

threshold function
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Table 5 De-noised performance evaluation of

different methods
Tk Snr/dB Nec RyisE
S_VMD 6.8573 0.890 4 0.066 7
IIE-MVMD 7.1333 0.897 4 0.064 6
SVD-EWT 8.1723 0.922 0 0.057 3
ARSI 10.562 0 0.955 8 0.043 5
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Table 6 Comparison of duration and operating efficiency

indicators of different algorithms

Tk S VMD IIE-MVMD SVD-EWT ARSI
ils 5.762 0.855 1.238 1.026
EJs! 15.89 115.90 106.22 226.19

M 2 6 ml A, A SCO7 ki Ak e K G N F
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R 4 TR RERR SR, G5 R 7,
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Table 7 Noise reduction performance evaluation under

different Syg

Ik S\r(FIMEA)/AB Syg /dB Nee Ryise
-3 4.646 8 0.8414 0.086 0

S_VMD 0 73335 0.9022  0.063 1
3 8.4326 0.926 1 0.0556
-3 5.694 2 0.8610  0.0763
IIE-MVMD 0 7.602 9 0.9089  0.0612
3 9.052 4 0.9351 0.0520
-3 7.608 7 0.9129 0.0612
SVD-EWT 0 9.581 6 0.943 1 0.048 7
3 10.0402 09488  0.0462
-3 8.9812 0.9349  0.0522
AT % 0 11.0763 09622  0.0410
3 12.1986 09740  0.0368
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Table 8 Noise reduction performance evaluation of

field-measured data

ik S_VMD [IE-MVMD SVD-EWT ARICHE
Ngr 3.074 6 3.760 9 3.040 7 4.498 0
Arr/% 26.61 52.06 18.30 20.56
* 9 AEEZENKSIEITHERERTLL

Table 9 Comparison of duration and operating efficiency

indicators of different algorithms

Tk S_VMD IIE-MVMD SVD-EWT ARI7:
ils 8.972 1.435 2.042 1.684
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