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Abstract: Inoculation of Arbuscular Mycorrhizal Fungi (AMF) combined with vegetation restoration has become a key
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reclamation technology for ecological restoration in mining subsidence. Investigating the accumulation and distribution of
photosynthetic carbon sequestration within the plant-soil system following years of mycorrhizal restoration holds signific-
ant importance for elucidating the carbon cycling processes in reclaimed soils of mining regions and achieving effective
carbon sequestration. The distribution strategy of photosynthetic carbon in the plant-soil system under long-term mycor-
rhizal cultivation was studied in the AMF area and the control area of Daliuta Mycorrhizal bioreclamation experimental
demonstration area by "°C isotope pulse labeling method and metabolic. The results are summarized as follows: Following
leaf carbon sequestration, there was a downward transfer of carbon to the leaf, stem, root, and soil. Long-term mycorrhizal
restoration significantly enhanced the accumulation of photosynthetic carbon within the plant-soil system in the mining
area. The average photosynthetic carbon enrichment amount in the labeled AMF area was 1.33 times greater than that ob-
served in the labeled control area. Additionally, the distribution ratio of photosynthetic carbon to the underground (plant
roots and soil) was increased by inoculation, and the distribution ratio and average enrichment in the underground part of
the labeled inoculation area were 13.4% and 299.3% higher than those in the labeled control area. More photosynthetic
carbon *C was present in the form of mineral-bound organic carbon(MAOC) after entering the soil. The average enrich-
ment amount of photosynthetic carbon C in MAOC was 246.8% more than that in the labeled control area. Furthermore,
mycorrhiza improved the ability of soil organic carbon conversion and the net enrichment of *C-MBC in the labeled AMF
area was 4.5 times that in the labeled control area, thereby contributing to soil carbon stability. Meanwhile, mycorrhizal as-
sociations enhance soil organic carbon conversion efficiency, facilitating the retention of photosynthetic carbon within the
soil. Combined with the results of metabolomics, it was found that AMF mycelial network affected the carbon metabolism
pathway of tyrosine metabolism, glycolysis and glycolysis synthesis, amino acid and nucleotide sugars synthesis respect-
ively. This regulation occurred through the metabolism of lipid and lipid molecules, organic heterocyclic compounds, or-
ganic oxides, phenylpropane and polyketones, ultimately affecting the enrichment of photo-synthetic carbon "*C in soil and
the stability of organic carbon pool. In general, microbial mycorrhizal reclamation can not only promote the accumulation
of soil organic carbon pool, but also regulate the transformation and stability of organic carbon pool, which is one of the
most effective methods to accelerate the realization of carbon reduction and carbon sink increase in mining area.

Key words: arbuscular mycorrhizal fungi; ecological reclamation of mining area; field °C isotope pulse labeling;
metabolic; photosynthetic carbon; carbon composition
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