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Abstract: Under the dual-carbon goal, the resource utilization of CO, driven by clean and renewable solar energy has be-
come an important research topic. However, the previous reports have mostly used high-purity CO, as the research object,
while the CO, concentration in the flue gas emitted by coal-fired power plants is only 3%—15%. To avoid the high-energy
CO, enrichment process, photocatalytic directional conversion of low concentration CO, into high-valued fuels or chemic-
als has important scientific significance for energy saving, emission reduction and its resource utilization. Cobalt-alumin-
um layered double hydroxide (CoAl-LDH) was firstly prepared by coprecipitation-hydrothermal method and visible-light
catalysts Ru/CoAl-LDH were constructed by loading ruthenium nanoparticles onto the surface of CoAl-LDH via surface
impregnation coupled with hydrogen heat treatment. The unique surface composition and structural characteristics of
Ru/CoAl-LDH composites are conductive to implement deep photoreduction of low concentration CO, using H,O as the
hydrogen source. Structural composition and micro-morphology of the composite catalysts Ru/CoAl-LDH were determ-
ined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and ultraviolet-visible dif-
fuse reflection spectroscopy. The results indicate that the loaded Ru species is zero valence state of metal Ru. Loading Ru
has no effect on the nano-lamellar morphology of CoAl-LDH, but can significantly improve the photoresponse perform-
ance of composite catalysts. By using Ru/CoAl-LDH as photocatalysts, H,O as electron donor and hydrogen source, and
10% CO,/N, mixture as simulated flue gas, the effect of Ru loading amount on the productivity of CO, reduction products
and the selectivity of deep reduction products were investigated under visible light irradiation. 1.6% Ru/CoAl-LDH exhib-
ited the optimal CO, photoreduction performance. After 3h of visible light irradiation, the productivity and selectivity of
deep reduction product methane reached 452.4 pmol/g and 86.3%, which were 10.4 and 3.3 times of single CoAl-LDH, re-
spectively. Meanwhile, the performance enhancement mechanism on deep photoreduction of low concentration CO, was
explored by using CO, adsorption isotherms, in-situ XPS, transient photocurrent and impedance spectroscopy. The —OH
groups on the surface of CoAl-LDH facilitate selective adsorption of composite catalysts for low concentration CO,. Ex-
cellent H,O oxidation performance of CoAl-LDH can provide sufficient in-situ hydrogen source for deep photoreduction
of CO,, without the use of H, having explosive risk. As the photoelectron acceptor, the loaded Ru can not only enhance the
separation and migration efficiency of photogenerated charges, but also implement multi-electron reduction as active re-
ductive sites of CO,. Therefore, the synergistic effect of CoAl-LDH and cocatalyst Ru is the primary reason for the im-
provement of low concentration CO, deep photoreduction performance. The composite catalysts Ru/CoAl-LDH realize the
effective coupling of visible-light water oxidation and low concentration CO, deep reduction, providing important theoret-
ical guidance for the construction of essentially safe and low-energy consumptive CO, conversion system. It also provides

a new idea for the resource utilization of CO, from coal flue gas.
Key words: low concentration CO,; deep photoreduction; CoAl-LDH; Ru loading; water oxidation
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Table 1 Performance comparison of CO, photoreduction using H,O as reductant

B ;‘@ﬁ;ﬂﬁ% HEALTR 5 R /K SR/ - ﬁﬁ&?%%ﬂz ) F Bee e ik
SRS W Fi/mg 10° Pa %/ (umol - g '+ 1) /%
g-CNR/CoAlLa—LDH 350 100 298 0.2 CO: 44.5; CH,: 36.6 73.5 [44]
Ag/TiO,~GDL 300 10 293 25 CO: 204.5; CH,: 99.4 61.7 [14]
Cs,AgBiBry/TiO, 450 5 298 1.0 CO:5.7; CHy: 8.5 82.1 [45]
0.3% Mo-TiO, 300 15 303 1.0 CO: 8.2; CH,: 9.8 77.6 [8]
NiO/g—C3N,/1GO 300 20 293 1.0 C0:22.9; CHy: 5.3 432 [46]
Bi,WO¢/InVO, 300 100 298 1.0 CO: 18.0; CH,: 1.1 19.6 [47]
1.6% Ru/CoAl-LDH 300 25 298 13 CO: 93.1; CHy: 150.8 86.3 23
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