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Abstract: The coal seams in tectonic anomaly areas have high gas content, high geostress, low permeability, the develop-
ment of tectonic coal, and uneven distribution of disaster-causing energy. These areas are key for preventing and con-
trolling coal and gas outburst accidents. Hydraulic/pneumatic punching technology is one of the main methods for gas
drainage in tectonic coal. Compared to conventional drilling for gas extraction, it significantly increases the pressure relief
radius. However, new stress concentration areas easily form between adjacent punching holes in the coal seam, limiting
and affecting gas extraction. This paper combined theoretical analysis, numerical simulation, and field experiments, this
study investigated the principles of energy reduction and outburst prevention using combined punching and controlled en-
ergy-accumulating blasting measures. The main conclusions of this paper are as follows: (D This paper proposes an Out-
burst Energy Unit Cutting theory and a punching-blasting synergistic permeability enhancement technology, combining
with the distribution of outburst potential and outburst start-up energy criteria, dividing the coal seam into several energy
units, and carrying out cutting at the boundary and internal zoning management. Essentially, this method involves punch-
ing holes first, followed by controlled energy-accumulating blasting to create directional fractures in the tectonic areas of
the coal seam, releasing stress. The punched holes provide free space for the movement of coal within the impact range of
the blasting injection, forming a free surface of the coal at the blasting injection point and altering the continuity of the
coal seam. The generated explosive gases and directional stress waves can promote stress rebalancing. This alters the
gradient of elastic and gas expansion energy in the coal body, effectively cutting the energy units in tectonic anomaly
areas. 2 The FALC’ numerical simulation shows that punching can reduce the stress in the coal around the hole. As the
punching radius increases, the pressure relief radius also increases. After punching, a certain range of stress concentration
forms outside the pressure relief zone around the hole, which limits gas flow. 3 The media-energy cutting principle of
controlled directional cumulative blasting technology is clarified. The blasting changes the outburst potential occurrence
gradient near the free surface of the coal of the cutting unit, realizing the media-cutting-controlled energy cutting. The unit
cutting effectively increases the length of the energy-resistant zone in front of the mining work and reduces the risk of op-
eration in the low-high energy transition zone. 4) A numerical model was constructed based on the fluid-solid coupling al-
gorithm to simulate the synergistic effect of controlled directional energy-focused blasting and punching holes. Results in-
dicate that controlled energy-accumulating blasting achieves directional fracturing of the coal seam, forming larger cracks
in the energy concentration direction. Over time, radial crack networks form around the punched holes as the control hole,
eventually connecting with cracks in non-energy concentration directions, effectively enhancing permeability in tectonic
anomaly areas. (5 Field tests show that within a 10-meter range around the blasting hole, the stress and debris amount in
the punched area of the coal body significantly decreases. The gas extraction volume after using single and double energy-
focused tubes was 1.76 to 4.35 times and 1.35 to 8.60 times, respectively, compared to before blasting. The effective gas
extraction radius of hydraulic punching was only 5 meters, while the synergistic pressure relief and permeability enhance-
ment radius of punching and blasting were at least 10 meters, more than doubling the pressure relief radius in tectonic an-

omaly areas, and the monthly driving speed of coal roadway has been increased by about 20 m per month.
Key words: coal and gas outburst; tectonic anomalies; energy unit cutting; controlled energy-accumulating blasting;
pressure relief and permeability enhancement

AR JEART A AR AR R 57 X, 2 25 502 PU A

0 31 E B AR WA RE RS 2 R, O th B

RS FUHT S (LT f AR 1) S B2 H i 1
AE 5 FUIB R M Z AR SRR . R TR R T
H TR £ B SR, (B R SRR AT R A, B
REHGE N GHIERA C, LI w2

AR, BT AR T TOUR R 30100 S ) e PR,
Sy TR Ml sy 9CE T E U A
LA,

) 3 35 J2 XU PUTIA B A R i, AP R A



553

P T AR AT XA T UIRIHE Kb LR R A A 2479

POEH KT LR AR FERAEZ L SRR
PR IR FCHHR BT A 28 M oA 50 K it — U
FER HEAR LA TERARYZ ST, SR A2 FUi
B AR TR 7 L/ 2 2 B UL A AR A2 48 T
BEFB . AT H BB LT A SR AR N ), 42
FUITHERA R o H R T2 AR B AL
T B J LA 2 22k, 0 ) B 43 A A A 24, TR fL T
) Pl R0 LA 2590 A0 Y 187 3 4 v X, il 249 BLUr v R
T BT ST F WK A7 whAL AT LA R AR L A A
N7 7, ABAE B e X AMIGFEAE R 3k B DX 5 0 T B IX
AL R AR, I 4R R XA ) MR TR S S 7, HLIN
TGS L S LI A Y, e
IR X, BER R J7 8 vhfL AT . HAEAAR S
HHNEE, 55 R BT A R S X S B
TR AR,

Wit 5 R A R 1 e, SR BRI A AR B vz g
FH T IEZIEE . AN i 250 Ul MR i e
L RIE RGeS, FH AR R AR A A = A
LY STIBUR A WL G/ AN (1 a= AL % /N
R ATB %] 1792 4F BAADER % 3R 5 gesson ',
JE 7] SR BB BRI i i = AR AR R By ), RERSTE SR HE
J7 1A B B R 24 4, e K i K FAE R Bk
20 A A AL ] 4 o M 2 b R
W TN 135 B AL, 11 6 SR R T RN AR S4B &
FrEA P RS RIRT HT BAL . XL AN R
SR 0 1 1 AL R TE 2Ry R e, e Bl 1AL
(i) B 2R R o A K- A2 o) A B4 0 i e 1 B B i R o
FLERBEAR M . X m FUBT IS M2 T R e
BRI, AT SR LR A, SRR B AR R 1)
905 Ja SR A SR U SRR S VR, P il A s
T R BE R0 iR e S5 PRI g 0, R BE AR
FEJE T 55 A0 A2 3G 35 7 ) b 0 0 ) DA B 2 T
L AR

B X ) i S DX AR T R 8 378 PR X £ T R
EH R T RE B AT D) E BRIS AEDG N [ g I [R]
ROBEHAR . wPELE R (RTAR “piag” ) BASCR AW
HRT-Be, BH VBEH R —, B2 29040 T AR
T S KOMAFIE X4, SR HBRE o0 AT . BB AT
B A4 A 9 7 ik, TF R i g W [R50 £ R B %
RIS AR TS

1 BEERTYREIE KB RIFE

L1 BRERHRHEEERR
T R AT 3 AR R Ay L FUT A
BRI, ey o AT ECHT 2 SR R AR,

R E N 4B B 2E L Wk . KRR
1EPY B F B, AR R RE R HIR, R5%
Wk ARE RS, HREBRRIEA AT kRN, KR
W BE b TR I R4 % IV A, AR 118 JREAA AN W
I AR SRl . B, Y RER B A R AZERRSE
SRR, 28 42 E P HODOTT 4t T fig & <7 fe )
i R R R OCRIAT TR, R ILE Rt
L B N/ Ve

e.+e; > Wt Wy (1)

X e, WAL RE, MJ; e, N FLITIZAK RE, MT; Wy
WERE, MI; W, G2, MT .

WEFHEIT LRI RE e R U TRRSL A
S, RIS 25 SR A AR RN E R ), (LB T L
N B AE 2 P R . MR &
Az 5 H AR IO i DR 23 e 285 1 1 22 1 e R
TH IR, B0 g e 8 )y A SR BT A 3 52 T 5 1Y
T
1.2 BEEERTIIEER

PR 1 S DGR B R ) L e BUT R D
5 PUT o AR B S AR ), 2 X SRR 2 B
FESE, FUTRE = 5 7 & 2 B A A3, il 2 vk B8
e, W2 TR E R F SR A R AR A E R A
) T S DX A R 32 A P e 8 g £ 7y
Ki, FEN R RERTS, HE Sk W R 7
iR ) PR v i R R T ) LB 2P R 4,
TR IE R PFLERRAR . R whfL 48 e T A % R (A
TR Ty, BERCE R RS RE . (HAEM 3 50 X,
ZA W fLFLIA AR B R, thfLFLJE R g 4 o X5 4 s
JIFHEREG, FEUAAE R e KU X, L AL A 3
AT LA SO I DX R, (L[] B R 7 34 iz g
PR, BIAHLL R, PIRGALIEE B 5 KT
BAANELFL R W A5 17 g 4 rp X L AR B FL IR AR T
R X, il 29 FUITHR: o

H T2 5 I BB AN, A T A RO B AL i
SR X B fER T, R T Mk o) E
P, DA 2 b 5T 5 o0 0) 43 58 Hh B0I RE 18 A AR
P, A 53102 O v e X MR RE X 4547 TR i BA T,
PRI b2 SR R T BO IR 2 380 &), LA i
IR Bt VIR, A8 5 1 Al A% 35 1% BHL I 25 1],
P2 G B L RE B PR, BT AR B A A
B CALPR /AL T2 Rl e 4 22, ) 55 0 A8 T2 e A BL
HiT R K BE A 5 B TTE B, 2 SR B — BB B BT Y F K i
REAH, FCMEREAR S Al it 2% B, O b ST 023 B
XA HIGEE



2480 # %

F 1

2025 4F55 50 &

SRRV A, BCYIEIRE RS0 T T A A7 R
T XIS, TR BE B 1 BT SR TE BB,
BRI 1w RE X AR BE X AU RERE 123, 1] 1 Mg Ho0
DIRIBE A A LR B

R L3 7 ORITA] 585 1] SR BERRBE AR &,
I T REIX SRR RE DR A9 23 DXAR AL, A CHE

W22 RS Y AL T RE 200 AR I, 5 18 X A
UR R R O ) BT L R N ) S
PRARZE e i W AR, e LI | KEZh
PR AL SRS TR . DLEE 1. ARYEEEmI
Wit T 2856, = e DX LA LB PR AL IR BB X 46 0 40%
DL b, JEZy e hn 50% LA L.

OO0
OOWOOS O O

O O O O

0 00 6=
<) O ()
) ()

1—ph LU 2—RAlAL; 3—RAETT I 4—MiE; S—mmelX; 6—RiElX

K1 Aet AR BE Mo AR LR
Fig.1 Dirilling arrangement diagram of the energy unit cutting theory and punching-blasting technology

x1 BEESRERSREESY
Table 1 Threshold conditions for high and low energy level

areas in coal seam

i P RE X M BRI S AR

e SR A <05 (22 M)

LT H J1/MPa >0.74 B2 )

B e /(m® - ) >6 Qe e Y)

LR  E /kPa >133 B 2R )
HuR F1/MPa BRREXIEN30% L) E BRI T 40
SRR IR R A > 40% BN SRS

TE: RBEXI R L FAE R R A SR B A

FERG T S DX B S R IO L T, 985 76 v fLAL
i) 22 [R5 5 1o SR REAR A FL O SCHE R e . b fL A it
Ao FL ) Jo] FRREAA 7= A s A 40, RIS, oz R 524
BRIKTIT, A B AR W E P o MR R A A
B il P I E 1) AL aE i, L AL A D il L 2=
5K, SRALN PR A e T AR AL 23 6],
AR ol L FLJRT AR 7 A B i) SR A, g A SR BR A
AR A B B, fe b ) TR A I B g -1
iy, RETRORA 1 S XA B SR R, (AR RIS fE
FUELIYTEZ B B B8 A A B, SEBM i S  IX 5% L g
SR IC A RO, DT s PR i 5 DXREAAR I 1528

B, PR FCHR
1.3 EEFLEEEERE

IR I3/ B LI A i HeK A I vp o R I
7 BT LR, AL & LA 7 AR,
LR B TR AR S () FLIR 2 S, Al LA IR A 2
BRER, HUEAR BEY K, SRR,
TRB 555 0 IR VAR, GAO 5P MR SR B
G3 AT N T3 53 A RASKE K Ty L L AR ()95 15 33
BALBIR AT T 0F5E, 45 R aNEl 2 iR (B, o) H)

GIKIE )5 0 NARIRINE TT5 0 AN 15 Py AR

FLBRIE 15 P AFLBRE J15 k MB B R ky WWIHB 5
B kg NIERG LA R BE B AL BRI 35 5 d SRS
mE 2 ATE 1, whFLIG, FLRRAARS i3 R b 2 S Y
RSB el 5”2 BRI B

A 5 30T L L 7 S0 P 483 4 DX R P S8 i
AH S R T, U BH L S 3 35 4 O T R A b
AR, 1 7 B H DX A A 2 32 32080 0N, X BT R
A —E MBHAFEH
1.4 FIE7E [0 32 AL IR AR B IR HE B AL U
1.4.1  HEEEMRABYLE

RABENE R —FhBe 25 A, 7 P58 E 0] SR R i
FR R OCEZ, HAM WA 3 iR,

MR R BB A1 (K] 3), B SR AR MR BB 1 53 A1 73



%54 TR T M S DCRE R BT D) R B S LR P [ M R AR 2481
Pm = Pmax
{ Pm < Pmin (2)

LY S NP
I8 Hjo,

(LIS SR B
VIATLIRIE /1P,

Pl 2 7Kg oL LR B S0 A 2 i SR A A BT
Fig.2 Evolution model of coal permeability around hydraulic

flushing holes”!

3 A5 EREETT 1)L P A R EE T R AR R AE
U AR SRS, B bl P AR I AR = R
ENRERE, AR T 1 T &AL R AR, R ER
RET I o MR Wk DAL 40, 20 3R REAE PN BE S I 1
TP E BN, AF F R AET7 10 3 1 ) AR, Pk
AERRE I . XFForm I, MR KERE oA 52 SR REE
SN, ARRAE T . fE ERAET 10 L, BAEST
TR B R AIE e AT R B d 24 ol T il
WA ), A AT 0] B sl
ORIy GELN T
1.4.2  JEARZLERY AL

FE AT 15 1) SR BEARBEAE R, (A 2490 30— i
A IERBE IR FPLARBEIR 2 M a0, G Br 2 18 )
W ()P, IR AL, AR T B o

(a) BAEEHMIRE

A

Ao Py MR AZ TR | P ST, MPa; P, KRS
BPUEREE, MPa; Py, ARASSUHRE (RUA(E),
MPa,

2 RN 1K T A5 TR ) ShZS P 8 B i, A
SR RARIEIR, S0 N ) KT TR 8
SRAERRIEIR . G A fe B R A AOE
FTFER, — 305 LU o i Bo® A E A T
FEREIEAR = A W R 4B LA S BRI L Y 8, 55—
43 W DA v e SR B B A 7 2R Bt A v 2R 4 7 A 3]
FobE ISR Y R, A R AR I 1 DA T A
Zx AR ) R 46 AR T8 A [ HARASTE , fihr s B —
I, T SO A Y T BE R IR S
5 FE A 0.126 MPa, 24 B4 Jié R 47 1 IR 2% Sy i i
IR
1.4.3  FEGIFLAGVE DL

PR FL ] P 4 L T s i S4B R A
Pl FLED 2 L (b fLFLIRD, mT R 1 7 A5 4G $ 48t A e
1, AR TS, V7 2 ik 4 il FL A 25 T2 U 7
& S SE i EAN O VAL AL Y S AN ) S o A I /33
4 B4 LI, 228 1A el e S 7= A b A, 7%
R P A YT W AR T, YA BT s 2 (6] 77 A 6 B 253K
B —E PR, eI FLIR B A 240, mT 4 5 1]
RABHR LT, 2 FL s B R ) S e FH an ] 4
JiR o

P ] 4 ] R AR BN ) i 2R s L Y i
SRR R, Pl AL A AR B — a5 M [R5 %)
NS AR 1L 0y SR o R STBEE o,
S B BIEA . ARSI 2 AT, Y
W ALHE 2 T FLIS, 2 LS Bl B — a5 M A

D 1L (AL B B 1)
“
1%

FRVEFLEE
\

A

Jite) T (EZRRETT )

L R4Sy

(b) R A EPHO R AR

K3 JRAEE MHIRRERUN (1B A SCHR15])
Fig.3 Concentrator and energy gathering effect (Modified from the literature [15])



2482 # % F ® 2025 4E45 50 %
(B FTIRAS
= % (1=K) (0o — o) + % (1= 4K* + 3k*) (Gmacos 20 — g3y,c08 26) 3)
1 Gop = % (1+ kz) (G = Os) + % (1 + 3k2) (G,00COS 20 + Gy cOS 26) 4)
=5 (1+2K2 = 3k*) (Gmpc08 20+ 708 20)  (5) DR ] FL ] Rl A A o s A R L S5 4 il £L o
p OREL I, 2 BRI A, SR AR
K= © o KT BB HURLHR I, P FL I IR 2

2 o P AL R AR R B M AR 1) B,
MPa; 6,49 0 M A3V N ST, MPa; o, 4% il £LJ [
BRI R 5 M AR 1T, MPa; o 442l LA
FEREAR I S b s MR DTIRL N ST, MPa; 7,0 5 ]
FLIA BRI 8 s M TSI F1, MPa; r 4% il £L
AR, m N MO EIFER L PO R RS, my 00 M
A B4 A L s 19 1 2 AL B ) L AR
e

Pl 4 ibilpLa S S e !

Fig.4 Stress-reflecting superposition of control hole boundary!!

e 3)—3X (6) T, Y k=1 B, 0,70, 75=0, 4
G==+n I, doge/d6=0, gy FHLKAE:

090 = 30m0 + Omr (7)

ey

LR

oL OT42) Stk

FEAEFR [ B, 1025 SR D) RN ST o KT BHZS
PSR BE I, 42 i FLIR FEIRE A 227 A 11 2B

2 REMFLBEELLS

PABEWIIED 29040 HLAR ST AR 28 2 nh L& /R
55, R A FLAC™ BB BB 2 AR [ K 77 wh AL
AR T AR AR T BRI DL, 3B vh L LR A
AR B B DRI R, ) 437 R
2.1 HEEBAES

29040 TAETHHIIAZY 900 m, HEEH 2.7 m. %1&
S K 7 wh AL A X AR, O A LALIR Y 1/8 AT
AL WK S s, B S Ry 04 BEE R LU
PRI ZEN WN L . 4550 - SE B, a2
ZHORIE LR 2,

2.2 KM FLE R E EYSE

SR SEAN ) s AR X LR AR IS B SR, 4
XT3 /AR 0.3, 0.6 F10.9 m AY7K g L iE AT A5
o whFLFL ARG = 18] F2 07 143 W&l 6 s .

HE 6 T & H, Kb fLAEL IS, L LR R A4
(R0 46 L 3 AR R A T, P88 i T B 7 T 43T o
i wFL AL R AR AR A 3 1y g A ] = 8 B R T —
FEE BB X e R 32 0 ) 76 SR X 22 8 SOE A%
N EEHIX , Fes IR I AEFLE 3 AR, 7 A

MR it

K5 KU L e

Fig.5 Flushing simulation geometric model



ST A A S X RE R BT U e S F AR R AR 2483

R2 BEITESY

Table 2 Main parameters of the model
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Fig.6 Principal stress distribution of coal around flushing holes
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Fig.8 Geometric model for numerical simulation of controlled directional energy concentration blasting
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Fig.9 Fracture expansion during controlled directional energy concentration blasting
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Fig.10 Explosive stress wave propagation process during controlled directional energy concentration blasting
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Table 7 Construction parameters of single (double) concentrator blasting test drill holes
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Fig.16 Schematic layout of single (double) concentrator blasting test drill holes
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Fig.17 Stress test results after bursting versus distance

from the bursting hole
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Fig.18 Slag discharge curves before and after blasting
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Fig.19 Gas extraction pure volume comparison before and after concentrator blasting
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Fig.20 Gas content changes during the application of the combined flushing and blasting technology
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