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Abstract: Hydraulic fracturing technology is one of the effective methods for weakening the roof of coal mines and pre-
venting rockburst. This article takes the 2305 thick coal seam fully mechanized caving working face of a coal mine in
Shaanxi Province as the engineering background, and uses theoretical analysis, numerical simulation, on-site testing, and
engineering monitoring methods to study the weakening control technology of the hard roof area. Based on the theory of
“plastic stranded wire”, a mechanical model of the basic top “thin plate structure” is constructed, and a method is pro-
posed to determine the hydraulic fracturing target layer by combining the accumulated bending strain energy and the dis-
tribution and response characteristics of high-energy microseismic events at the critical state of the first fracture of the hard
top plate in the coal seam extraction process. According to this method, the fracturing target layer of 2305 working face is
determined to be 14.50 m thick coarse sandstone; A numerical calculation model for strain softening under fluid structure
coupling mode was constructed, and a comparative experiment was designed with and without directional segmented hy-
draulic fracturing in the target layer. The strength stress ratio parameter was introduced to analyze the local stability of the
roof. The results showed that directional long drilling hydraulic fracturing effectively broke the integrity of the basic roof
and shortened the step distance of the basic roof. The initial step distance was reduced by 25.81%, and the periodic step
distance was reduced by 24.64%, reducing the possibility of forming huge dynamic loads and inducing impact ground
pressure due to the large suspended area of the roof; Based on the geological conditions of the 2305 working face, a multi-
dimensional segmented hydraulic fracturing construction plan combining directional long drilling and conventional shal-
low drilling was designed. During the fracturing process of directional long drilling holes No.20, No.21, and No.22, there
were 30, 35, and 23 instances of pressure drop above 3 MPa, respectively. The directional segmented hydraulic fracturing
caused damage to the integrity of the roof. During the conventional shallow drilling fracturing process, the expansion
forms of different fractures showed different stage characteristics of two-stage stability and multi-stage development on
the fracturing curve. The fracturing effect of the roof and top coal was significant; Multiple monitoring methods were used
to monitor the surrounding rock activity of the 2305 working face. The implementation of multi-dimensional segmented
hydraulic fracturing technology destroyed the integrity of the hard roof. Compared with the 2303 working face without hy-
draulic fracturing, the initial and periodic pressure step distances were reduced by 24 m and 12 m, respectively, with a re-
duction of 33.33% and 32.19%, effectively reducing the working resistance of the mining face support and reducing the
possibility of high-energy microseismic events, providing a guarantee for underground safety production.

Key words: extra-thick coal seam; hard stratum; plastic mechanics; hydraulic fracturing; seismic monitoring.
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Fig.1 Workface layout and borehole columns
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Fig.2 Structural-mechanical modeling of “thin plates”
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Fig.4 Microseismic downhole response map during cyclic incoming pressure
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Table 1 Critical layer and initial instability accumulation bending strain energy of 2305 working face
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Hlb s 23890 15.29 8.31 3.20 45 4.61 0.05 1.02x107"! 02
e 2460 10.83 8.13 275 38 1.84 0.03 8.16x107"3 02
Rt 2800 16.04 12.02 4.47 43 4.96 0.10 1.02x10710 0.2
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hydraulic fracturing
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Table 3 Directional segmented long borehole technical parameters

L FLE/m JRZLBHL SEZLRT ] /min SR AGK B /m? 24 (8]l /min {1 173 FEl/MPa TE /K k3 Bl /m?®
20% 564 12 1372 250.2 84~136 27.6~32.5 17.5~24.2
21% 579 12 1762 333.6 104~168 31.4~37.5 19.0~33.5
2% 600 12 2097 399.3 124~196 28.1~35.3 23.2~36.8
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Fig.18 No.20 drilling time-pressure curves
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Fig.19 No.21 drilling time-pressure curves
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Fig.21 Evolution of pressure drop (=3 MPa) in directional long

boreholes
4.2.2 HILRALEE
MR 2305 A H AL AL BCRIT 5, W LR AL 122 H ALK BT
R T2 IEE AL, & HRKEE, R Fig.22 Conventional shallow hydraulic fracturing
TE/K 3 W EZT R, B LRI 3 B2, 2N H1P 23 Al ALV R T 32 MPa,

FEAT EERIR A 1 By, HEARTH N SR P, A BRI PR AN 10 ming RTINS RPN
K 25~50 min, #JZBUETT 20~39 MPa, BUZBURTT  RBAA [R]9H B 78 R 2R 2 b 3R B0 R 1A £ B
17~24 MPa, Bl R AKE S~11 m’, WRRALEC  BeMERRAE, RECE IR 2 Fhdh R IE 20 XUH B i A
PG TANE 22 B WHRALEORS LR 4, it MZHrBAE M. WAEHERIE SRR ik 35 MPa



806 £ % % 1# 2025 4E4 50 %
x4 EMLAEARASH
Table 4 Conventional shallow hole technical parameters
(A LB TWAE/mM PHARM O TIMERm CABRTIES/MPa HECTEIMPa PR AK /M
VIR 10 31.35 15.00 16.35 29.35 20.90 8.89
AR 10 40.18 19.00 21.18 26.50 18.20 8.41
B 10 41.90 16.35 25.55 27.85 20.02 7.65
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Fig.23 Conventional shallow hole fracturing curves
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Fig.24 2303 hydraulic bracket working resistance cloud diagram
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Fig.26 Distribution characteristics of microseismic events in the

fractured section of the 2305 working face
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Fig.27 Comparison of microseismic events before and after

hydraulic fracturing
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