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Abstract: To clarify the influence of core wettability on the seepage process during the CO, saline aquifer storage, this pa-
per studies the influence of wettability change in the saline aquifer on the seepage process based on the pore-level seepage
model combined with nuclear magnetic resonance (NMR) technology, providing theoretical support for revealing the two-
phase seepage law under the effect of wettability. Firstly, the saturation parameters during the seepage process are meas-

ured by NMR technology in this paper, and the quadratic function coupling relationship between wettability and brine sat-

Wim B H:2024-08-10  SREIGRIE: #EF  HRERE: MM DOI 10.13225/).cnki jecs.2024.0956
EETA: FR ARFEIEEIH (52366010); “RINFEA” THl-FF4EHEH A A (2023TSYCQNTI0035); sk H /R
FIR X SR BB H (2022B01033-2)
PEBR A K5 BRTK - AT (1989—), &, Bl B G AT, RIZHE, 195, {1, E-mail: mhriay@xju.edu.cn
S AR EE HRMK - BRI, BEfRAd:, 259, 55, CO, BUKIZETFH A DI TR B A2 R 1], SR,
2025, 50(2): 1291-1299.
MEIHERIAYI Mutailipu , XUE Fusheng, LI Tao, et al. Effect of core wettability on seepage characteristics % oh Il 15
during CO, saline aquifer sequestration process[J]. Journal of China Coal Society, 2025, 50(2): 1291-1299.



https://doi.org/10.13225/j.cnki.jccs.2024.0956
mailto:mhriay@xju.edu.cn

1292 # % F #® 2025 445 50 %

uration is quantitatively analyzed. Later, based on the level set method at the two-dimensional level, by setting wettability
as different wetting levels and spatial position functions, the influence of different wettability of the reservoir in displa-
cing brine in the porous medium by CO, on the seepage process is simulated. It was found that based on the functional
coupling relationship between nuclear magnetic resonance longitudinal relaxation time (7)) and transverse relaxation time
(T,) and saline water saturation (), the core wettability changes during CO, displacement of saline water could be well
characterized. Based on the pore-scale seepage model representing the isotropy of wettability at the pore scale, it was dis-
covered that when the core wettability was in extreme conditions, such as strongly hydrophilic (8 = 0°), neutrally wetted (0
= 90°), or strongly hydrophobic (6 = 180°), the residual water saturation was lower and the displacement effect was better.
For anisotropic wettability, the displacement process was more complex, and its influence on relative permeability and re-
sidual saline water saturation varied. Especially, different wettability manifestations at the inlet and outlet ends would dir-
ectly affect the two-phase seepage process. When the inlet end was more hydrophilic and the outlet end was more hydro-
phobic, the saline water seepage velocity was faster; this might be due to the anisotropic wettability causing the uneven
distribution of seepage behavior, thereby resulting in spatial and temporal differences in seepage rate and displacement ef-
ficiency; it can be seen that the physical characteristics of the seepage channel have a significant influence on the seepage
process. Future research needs to focus on the different effects at time scales in addition to the associated changes at spa-
tial scales in the saline aquifer.

Key words: CO, saline aquifer sequestration; nclear magnetic resonance; pore-scale seepage model; wettability; seep-

age processes
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for anisotropic different wetting conditions
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