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Physical simulation study on the transport of biomimetics dandelion proppant in
similar coalbed methane fracture network

LI Jun, LIU Pingli, LI Nianyin
(Southwest Petroleum University, Petroleum Engineering School, Chengdu 610500, China)

Abstract: Accelerating the exploration and development of deep coalbed methane resources is a key direction for develop-
ing coalbed methane. However, with large-scale volume fracturing in deep coalbed methane development, the complexity

of the fractures formed by deep coalbed methane fracturing gradually increases. However, the low-viscosity fracturing flu-
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id carrying spherical proppants has limited transport and turning performance in complex deep coalbed methane fractures,
resulting in the poor placement of proppant on the branch and deep fractures, seriously affecting the effect of deep coal-
bed methane large-scale volume fracturing. Thus, the author proposes a biomimetic dandelion proppant with efficient
transport and steering capabilities in low-viscosity fracturing fluids. To further understand this proppant's transport and
steering performance in deep coal seam fractures under different construction parameters, this study constructs a T-shaped
visualized complex fracture proppant transport experimental system based on common T-shaped fractures in deep coal
seams. The effects of construction parameters such as pump rate, perforation position, fracturing fluid viscosity, proppant
particle size, and proppant concentration on biomimetic dandelion proppant transport and steering performance in T-
shaped fractures were studied. It was found that with the increase of pump rate, the support area of biomimetic dandelion
proppant in the primary fracture of T-shaped fractures would increase. The sand embankment channel rate was gradually
increasing. At the same time, more proppants were turning into the branch fractures of the T-shaped fractures, indicating
an increase in pump rate and an improvement in the transport and turning performance of the biomimetic dandelion prop-
pants. Biomimetic dandelion proppants could maintain good transport efficiency in fracturing fluids of different viscosit-
ies and accumulate to form sand embankments with large channels. A single perforation in the middle could form better
accumulation effects in both the branch and central fractures of the T-shaped fracture. As the sand ratio increases, the area
of the proppant in the primary and branch fractures of the T-shaped gradually increases. However, as time passes, the in-
crease of proppant area would slow down, and the channel rate of the sand embankment gradually decreases. Based on
qualitative analysis of construction factors, it is recommended to use biomimetic dandelion proppant with medium to high
displacement, low viscosity, middle perforation method, small particle size proppant, and 7%—11% sand ratio when apply-
ing it to deep coalbed methane. This study can promote the large-scale application of biomimetic dandelion proppants in

deep coal seam fracturing and is also of great significance for the efficient development of deep coalbed methane in China.
Key words: hydraulic fracturing; bionics-dandelion proppant; proppant transportation; construction parameters.
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constructed based on T type fractures of coalbed methane!"
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Table 2 Field and laboratory test parameters of the complex

hydraulic fracture.
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Table 3 Test group & parameter table

ha=s AU it/ (em® - 7 Wit/g JEZSAE (mPa -+ s) SR/ mm SFLOf R

1 90°43 3L F44% 23 125 1 0.850~0.425 g

2 90°43 37 444% 46 125 1 0.850~0.425 g

3 90°43 3 544k 70 125 1 0.850~0.425 g
4 90°43 3L F44% 93 125 1 0.850~0.425 g

5 90°43 37 444% 116 125 1 0.850~0.425 g

6 90°43 3 544k 70 125 1 0.850~0.425 ot

7 90°43 3L F44% 70 125 1 0.850~0.425 g

8 90°43 37 444% 70 125 1 0.850~0.425 i

9 90°43 3 544k 70 125 1 0.850~0.425 i
10 90°47 S 5L4E 70 125 1 0.850~0.425 AR
11 90°43 37 444% 70 125 1 0.850~0.425 R
12 90°43 3 544k 70 125 1 0.850~0.425 bR
13 90°47 S 5L4E 70 125 6 0.850~0.425 g
14 90°43 37 444% 70 125 12 0.850~0.425 g
15 90°43 3 544k 70 125 16 0.850~0.425 g
16 90°47 S 5L4E 70 125 21 0.850~0.425 g
17 90°43 37 444% 70 125 1 0.212~0.106 g
18 90°43 3 544k 70 175 1 0.850~0.425 g
19 90°47 S 5L4E 70 225 1 0.850~0.425 g
20 90°43 37 444% 70 275 1 0.850~0.425 g
21 90°43 37 H44E 70 375 1 0.850~0.425 h
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Fig.4 Packing pattern of biomimetic dandelion proppant under the different pump rate
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Fig.5 Comparison of packing area and channel rate of biomimetic dandelion proppant under different pump rate
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Fig.10 Packing pattern of biomimetic dandelion proppant under the different fracturing fluid viscosities.
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Fig.12  Velocity distribution of biomimetic dandelion proppant under different fracturing fluid viscosities.
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