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Abstract: Revealing the aggregation and release mechanism of overlaying rock energy field is the theoretical basis for the
prevention and cure of coal-rock dynamic disasters. By means of simulation experiment, numerical calculation and theor-
etical analysis, the mechanical models of two steady states before and after hard rock breaking were established. The step
change characteristics of coal and rock under load before and after structural transient were compared and analyzed. The
evolution mechanism of strain energy and gravitational potential energy accumulation and release of overlying rock under
structural transient excitation was studied. The results show that it is affected by self-weight stress field and mining un-
loading effect, the rock strata within the mining influence range interact and restrict each other, and there is a close and
complex mechanical connection. The structural transient induced by hard rock breaking, it breaks the balance of the ori-
ginal old order between the rock strata. It leads to the transient change of the mechanical relation between the strata and
the load transfer path of the overlying strata. The strain energy field and the gravitational potential energy field of the
overlying strata change accordingly. In addition, the transient change of overburden load transfer path will cause different
instantaneous loading and unloading of coal and rock in different areas of stope space, resulting in differences in the en-
ergy evolution characteristics of overlying strata in different regions. Among them, after the fracture of the lower hard rock
stratum, the instantaneous unloading of the internal force of the fracture surface and the instantaneous loading formed by
the transient transition of the load transfer path of the overlying rock make some areas near the goaf instantaneously re-
bound upward and release strain energy, the instantaneous subsidence and release of gravitational potential energy in some
areas within the rebound zone. At the same time, the instantaneous unloading of the support load in the transient region of
the structure makes the upper hard rock layer sink instantaneously and the deformation increase sharply, and the gravita-
tional potential energy is released and the strain energy is accumulated. In essence, the dynamic mechanical response pro-
cess of coal rock in mining field under transient excitation of structural is a dynamic process of the evolution of the origin-
al space-time structure of coal rock in mining field to the new space-time structure after the original space-time structure of
coal rock in mining field is broken. There is a mutual conversion of strain energy, gravitational potential energy and kinet-
ic energy, accompanied by the aggregation and release of strain energy and gravitational potential energy. On the whole,
the release area of overlaying rock strain energy is small, mainly concentrated in the instantaneous unloading area, and the
rest areas increase instantaneously. The release range of gravitational potential energy is large, and only the rebound area

of the lower hard rock layer increases slightly.
Key words: structural transients; strain energy; gravitational potential energy; aggregation and release; coal-rock dy-
namic disaster
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Fig.1 Transient characteristics of spatial structure of overlying

strata before and after the periodic weighting
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Fig.2 Dynamic mechanical response characteristics of coal rock

in mining under transient excitation of structural
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Fig.8 Mechanical model of lower hard rock strata before and

after structural transient
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rock strata before and after transient
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