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摘　要：矿柱强度具有显著的倾角效应，准确预测倾斜矿柱的强度是保障倾斜矿体地下采场安全的

关键。为准确预测缓倾斜矿柱强度，融合运用参数化建模的灵活交互性、数值模拟的样本数据强

扩展性与机器学习方法的数据驱动优势，建立缓倾斜矿柱强度预测模型。基于 Rhino 中 Grasshop-
per 平台编制缓倾斜矿柱参数化建模程序，结合某铝土矿裂隙产状参数构建了 200 组黏合块体−离
散裂隙网络 (BBM-DFN) 矿柱数值模型。采用 FLAC3D-3DEC 耦合模拟方法，依据试错法标定后的

岩块与节理参数，开展了缓倾斜矿柱承载特性试验，监测并建立了机器学习缓倾斜矿柱强度数据

集，且验证了此数据集的可靠性。分别以支持向量机 (SVM)、极限学习机 (ELM)、轻量梯度提升

机 (LightGBM) 构建了缓倾斜矿柱强度预测模型，利用遗传编程 (GP) 和改进的量子粒子群算法

(IQPSO)2 种优化算法进一步提高模型性能，建立了缓倾斜矿柱强度与其影响因子之间的非线性映

射关系。结果表明：矿体倾角对矿柱强度影响显著，同一尺寸矿柱随倾角的增加其强度显著下降，

而不同宽高比矿柱的影响规律存在差异；当宽高比小于 1 时，矿柱影响因子敏感性主次顺序为：

倾角 > 高度 > 宽度；当宽高比大于 1 时，其影响因子敏感性主次顺序为：宽度 > 倾角 > 高度；交

叉验证了 SVM 模型是缓倾斜矿柱强度预测的最佳模型 (R2=0.921；REVS=0.926；RMAE=1.225；
RMSE=2.367)， 结 合 GP 与 IQPSO 算 法 优 化 后 模 型 预 测 性 能 得 到 了 进 一 步 提 升 (R2=0.976；
REVS=0.977；RMAE=0.465；RMSE=0.862)。采用 GP 的符号回归方法得到了缓倾斜铝土矿柱强度表达

式，对比经典矿柱强度理论验证了模型的准确性，拓新了倾斜矿柱强度的预测思路。
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Abstract: Pillar strength is significantly affected by inclination, making accurate prediction of inclined pillar strength cru-
cial for the safety of underground quarries in inclined ore bodies. To address this, a pillar strength prediction model is es-
tablished by integrating parametric  modelling's  flexible interactivity,  the scalability of  numerical  simulation sample data
and the data-driven advantages of machine learning methods.  A parametric modelling program for gently inclined pillar
was  compiled  based  on  the  Grasshopper  platform  in  Rhino,  furthermore,  the  fracture  production  parameters  of  bauxite
were  incorporated  into  a  200-group  Bonded  Block  Discrete  Fracture  Network  (BBM-DFN)  pillar  numerical  model.  A
coupled  FLAC3D-3DEC simulation  method was  employed to  conduct  tests  on  the  bearing  characteristics  of  a  gently   in-
clined pillar, based on the rock mass and joint parameters that had been calibrated by the trial-and-error method, monitor
and  build  a  machine  learning  gently  inclined  pillar  strength  dataset  and  verify  its  reliability.  Support  Vector  Machine
(SVM), Extreme Learning Machine (ELM) and Light Gradient Boosting Machine (LightGBM) were used to construct the
model for predicting the strength of gently inclined pillars. Additionally, two optimization algorithms, Genetic Program-
ming (GP) and Improved Quantum Particle Swarm Algorithm (IQPSO), were used to enhance model performance and es-
tablish  a  non-linear  mapping relationship  between the  influencing factors  and the  strength  of  the  gently  inclined pillars.
The study indicated that the orebodies inclination effect significantly impacts pillar strength.  Specifically,  pillar strength
decreases  markedly  with  increasing  inclination  for  pillars  of  the  same  size,  with  variations  depending  on  the  width-to-
height ratio. For w/h < 1, the sensitivity order of influencing factors on gently pillar strength was as follows: inclination >
height > width. For w/h > 1, the sensitivity order of the influencing factors was as follows: width > inclination > height;
SVM  is  the  best  model  for  the  gently  inclined  pillar  strength  prediction  (R2=0.921;  REVS=0.926;  RMAE=1.225;  RMSE=
2.367), and the model prediction performance is further improved after combining the optimizations of GP and IQPSO al-
gorithms (R2=0.976; REVS=0.977; RMAE=0.465; RMSE=0.862). The expression for the strength of gently inclined bauxite pil-
lars was obtained by symbolic regression based on GP. The accuracy of the model was tested against the classical theory
of pillar strength, extending the idea of predicting the strength of inclined pillars.
Key words: parametric modelling；numerical simulation；machine learning；gently inclined pillar；strength prediction
model
  

0　引　　言

矿体倾角引起的剪切力变化对倾斜矿柱的稳定

性具有显著影响[1-2]。采用房柱法开采倾斜矿体时，矿

柱通常沿其矿层倾角方向留设，由于倾斜层状岩体的

强各向异性及应力分布不均性，导致倾斜矿柱与水平

矿柱的承载特性存在较大差异[3-4]。山西煤下铝矿体

以似层状一水硬铝石型铝土矿为主，矿体倾角以缓倾

斜 (5°～ 30°)为主，矿石硬度高 (普氏系数约为 8 ～ 16)。
由于机械化开采难度较大，主要采用房柱式开采[5-6]。

矿柱作为房柱式采空区内唯一的支撑结构，其稳定性

对保障采场安全、提升资源回采率、控制岩层移动及

减小地表沉降等具有重要意义[7-8]，而矿柱强度是评价

矿柱稳定性的关键因素[9]。

在水平和近水平矿柱强度理论计算方面，已有研

究提出了线性[10-12]、指数[13]和幂函数[14-15]等类型的矿

柱强度经验公式，为矿柱的稳定性评价奠定了基础。

然而，这些经验公式主要侧重于矿柱尺寸效应与单轴

抗压强度，鲜有考虑倾角因素对强度的影响机制。与

水平矿柱相比，缓倾斜矿柱强度受到矿体倾角因素的

显著影响，使得其力学行为和破坏模式变得更加复

杂[16]。传统的未考虑倾角作用的矿柱强度理论无法

有效评估倾斜矿柱的强度[17]。

在倾斜矿柱强度研究方面，JESSU等[18]开展实验

室试验与数值模拟，研究砂岩和石灰岩强度随倾角变

化的强度折减系数，并建立了强度折减系数与倾角之

间的关联；罗斌玉等[19]以缓倾斜矿柱为研究对象，提

出了矿柱强度的解析式，并结合数值模拟探讨了倾角

效应的影响机制；姜立春等[20]对某石灰石矿非对称顶

板—矿柱支撑结构体进行了研究，建立了结构体承载

力学模型，阐明了倾角与跨度比对顶板变形特征及矿

柱失稳破坏模式的影响机制；DAS等[21]通过数值模拟

分析了矿柱内应力分布特征，揭示了倾斜矿柱的破坏

机理，并通过工程实践验证了其合理性。上述研究揭

示了倾角对矿柱承载特性的影响机制，并构建了部分

典型倾斜矿柱强度公式，为倾斜矿柱强度的计算提供

了理论依据。

综上所述，目前已有矿柱强度的研究方法主要包

括理论分析[15]、经验强度分析[17]、数值模拟[22]和实验

室试验[23]等。由于岩体的复杂各向异性，传统的研究
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方法和现有理论在预测矿柱强度时存在局限性，即研

究对象单一缺乏普适性，且未能充分考虑影响因子的

相关性。机器学习则擅长处理复杂的非线性问题，具

备自定义、规模化和高维度处理的优势，能够深入挖

掘变量之间的关系。

机器学习方法在矿业工程领域中的应用日益广

泛。MARK[24]总结了过往 25 a矿柱设计的科学依据，

提出了当前方法的局限性，并指明了以基于工程实例

数据库的智能优化算法是未来矿柱设计的主要研究

方向。WU等[25]提出了从岩石中晶体颗粒的微观参

数预测岩石的宏观参数的方法，并利用 5种机器学习

模型对岩石的单轴抗压强度与弹性模量进行了预测。

ZHU等[26]利用 RS2建立 252组砂岩单轴压缩样本集，

采用 4种机器学习模型预测开展了黏聚力和内摩擦

角预测。课题组[27]以水平铝土矿柱为研究对象，分析

了矿柱的尺寸效应，构建了 SVM、BPNN、RF、GPR 4
种矿柱强度模型，并得出 SVM为适用于水平铝土矿

柱的最佳模型。

上述研究为矿柱强度的倾角与尺寸效应研究提

供了丰富的机器学习模型参考。然而，对于铝土矿矿

柱，其可收集与参照的现场工程实例数据有限；实验

室岩样测试得出的仅为单轴抗压强度，缺乏尺度效应

对矿柱强度的影响，且工程现场难以对大尺寸矿柱的

承载能力进行实测；基于经验设计的方法，局限于特

定的地质环境，依赖于以往的矿柱设计案例[28]。而对

于复杂的矿柱几何形状或边界条件，数值模拟为其稳

定性研究提供了一种有效方法。依据实测的力学参

数模拟矿柱在此类复杂条件下的稳定性，可以实现样

本数据库的扩展，弥补铝土矿矿柱实测案例的缺乏，

增强样本的可靠性，从而提高铝土矿矿柱强度预测的

准确性。

笔者以缓倾斜铝土矿矿柱为研究对象，基于 Rhino
中 Grasshopper平台编制参数化建模电池组，实现缓

倾斜矿柱参数化 (长、宽、高与倾角 )建模。利用

FLAC3D−3DEC耦合模拟方法，开展矿柱承载特性试

验，建立机器学习模型所需矿柱强度数据集。对缓倾

斜矿柱强度影响因子进行敏感性分析，探究其与矿柱

强度之间的内在联系。分别采用 SVM算法、ELM前

馈神经网络、LightGBM集成学习算法建立缓倾斜矿

柱强度预测模型，依据模型评价指标选取最优模型。

基于 GP与 IQPSO 2种优化算法对最佳模型进一步优

化，构建一种缓倾斜矿柱强度预测的智能优化算法模

型，利用模型建立矿柱强度与其影响因子的非线性映

射关系。采用 GP的符号回归拟合缓倾斜铝土矿柱强

度表达式，并结合模型评价指标和经典的矿柱强度理

论验证其准确性，研究能够为倾斜矿柱强度的预测提

供新思路。 

1　矿柱强度预测方法

为准确高效地预测缓倾斜铝土矿矿柱强度，采用

参数化建模、耦合模拟与机器学习相结合的研究方法，

具体过程如下：

1)参数化方法建立 BBM−DFN矿柱模型，控制了

块度、节理因素对倾角与尺寸效应的影响，同时实现

其批量化建模，极大提高了建模效率。

2)基于参数化矿柱模型，采用 FLAC3D-3DEC耦

合模拟方法，开展缓倾斜矿柱承载特性试验，并建立

机器学习矿柱强度数据集。

3)利用机器学习方法构建多种缓倾斜矿柱强度

预测模型，并基于优化算法对矿柱强度模型进一步优

化，建立一种适用于缓倾斜矿柱强度预测的最佳

模型。 

1.1　矿柱参数化建模方法 

1.1.1　BBM−DFN矿柱模型

对于岩体之类的离散特征介质在受力时呈现的

不连续形变现象，描述介质细观结构和破裂行为的离

散元对岩体变形与破坏研究具有独特优势。粘结块

体模型 (BBM)是离散元表征岩体结构的一种模式，由

早期的粘结颗粒模型 (BPM)衍生而来。多采用四面

体或多面体单元组合的形式，在应力作用下易在其子

接触处断裂，以模拟裂缝的萌生、发育与扩展过程[29]。

BBM建模流程主要包括离散为块体结构和模型

中插入节理组。由于岩体裂隙的产状、尺寸和分布特

征都具有随机性，而离散裂隙网络 (DFN)通过设置圆

盘的断裂位置、大小、数量、间距、倾向和倾角等参数

可以较好表征出岩体裂隙的非均匀性。

因此，采用 BBM−DFN描述矿柱中岩块分布特征。

即 BBM采用 Voronoi块体建立矿柱，遍历块体采用

四面体单元进行剖分，并结合矿体裂隙分布特征插入

DFN节理组，从而建立能准确反映裂隙分布特征的矿

柱结构模型，BBM模型结构如图 1所示。 

1.1.2　参数化建模方法

参数化模型具有灵活性、可编辑性、自动化与批

量化建模的优势。基于 Rhino中 Grasshopper平台编

制了参数化建模电池组，实现缓倾斜矿柱的参数化建

模，其具体流程如下：

1)通过调整缓倾斜矿柱尺寸参数 (长、宽、高)与
倾角控制其形状。利用网格边长参数调整 Voronoi中
心点分布，统一密度生成 Voronoi块体，从而控制块度、

节理对尺寸效应的影响。
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2)以 Voronoi块体中心点为顶点在块体内生成四

面体单元，完成缓倾斜矿柱 BBM模型的参数化

构建。

3)结合矿体中节理分布的实测结果，插入 DFN
节理组，完成 BBM−DFN缓倾斜矿柱模型的构建，其

部分参数化建模电池组如图 2所示。 

1.2　FLAC3D-3DEC 耦合模拟方法

耦合模拟方法为类似于房柱式采场中的铝土矿

柱的承载试验，涉及到不同的材料类型、行为和条件

相互作用的岩土工程问题提供了强大的分析工具[30]。

FLAC3D(有限差分法)与 3DEC(离散元方法)耦合的

原理是识别耦合接触面处的网格点与区域面，将节点

的速度从 FLAC3D 传递到 3DEC，将节点的力从 3DEC
递到 FLAC3D，进而实现耦合计算。选择 FLAC3D−
3DEC耦合模拟方法的原因包括：

1)FLAC3D 和 3DEC的耦合能够更准确地模拟涉

及连续行为和离散行为的工程场景。3DEC主要对具

有节理、块体和界面等不连续性的离散系统进行模拟，

适合表示岩体、裂隙介质以及结构和颗粒材料之间的

相互作用；而 FLAC3D有效地模拟连续介质力学问题，

包括应力应变分析、变形等。这种耦合允许对具有连

续和离散元的系统进行分析，从而提供更全面的模拟

结果。

2)笔者主要研究数值模拟和机器学习相结合的

缓倾斜矿柱强度预测方法，需要 200组数值计算结果

作为数据集，通过在 2个软件之间分配计算负载，提

高模拟效率。

以研究缓倾斜铝土矿柱为例，利用 3DEC模拟矿

柱，对于矿柱的顶、底板岩层均采用 FLAC3D 进行模

拟分析，在缓倾斜矿柱与顶、底板的 2个接触面处耦

合，如图 3所示。 

1.3　矿柱强度预测机器学习模型

课题组前期研究已揭示 SVM算法在预测铝土矿

柱强度方面表现最佳，因此笔者仍选用 SVM作为缓

倾斜矿柱强度模型。同时，选用新兴的极限学习机

(ELM)和轻量梯度提升机 (LightGBM)来预测缓倾斜

矿柱强度作为对比。相比传统的 BP神经网络和 RF
算法，ELM和 LightGBM在神经网络和集成学习技术

上表现更为成熟。旨在探究 BP神经网络与 RF算法

的局限性，或是否这 2种机器学习技术不适用于铝土

矿柱强度预测的回归类问题。 

1.3.1　支持向量机 (SVM)
对于缓倾斜矿柱强度预测的回归类问题，SVM算

法的目标是寻找 1个最优函数，使得算法预测值与期

望值之间的误差最小化。通过映射函数与核函数，实

现空间维度的转换与复杂问题的简单化处理。在解决

小样本量、高维度和非线性关系上具有独特优势[31]。
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SVM的线性回归的拟合函数如下：

f (x) = wTy(x)+b (1)

式中：w 为最优超平面的权值；y(x)为核函数；b 为阈

值常数。 

1.3.2　极限学习机 (ELM)
传统的前馈神经网络算法 (如 BP神经网络)，存

在训练速度慢、易陷入局部最优值和对学习率参数取

值较为敏感等局限性。而 ELM作为当前热门的单隐

含层前馈神经网络，具有训练参数少、学习速度快、泛

化能力强的优点。与传统 BP神经网络相比，ELM的

学习效率高于前者 10倍以上，且对于回归类问题的

解决，ELM算法表现更为优越[32]。ELM的神经网络

结构如图 4所示。
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图 4    ELM模型框架

Fig.4    ELM modelling framework
 

由图 4可知：其框架由特征值映射的输入层，隐

含层以及矿柱强度作为的输出层，3层之间相互连接，

随机生成连接权重 m1 及阈值 m2，且在训练过程中无

需调整，只需要改变隐含层神经元个数，训练参数较

少，易于快速训练并得到高精度的模型。 

1.3.3　轻量梯度提升机 (LightGBM)
与 RF算法相似，梯度提升决策树 (GBDT)也是

基于决策树的一种集成学习算法，对于回归类问题，

决策树采用二叉回归树形式。提升是一种热门的机

器学习技术，在训练过程中不断生成弱学习器，并加

权累加到总模型中，通过提升的方式得到最终模型。

LightGBM算法是机器学习集成学习算法的进阶

版，基于 GBDT算法的模型框架，采用单边梯度采样、

Level-wise生长方式、互斥特征捆绑和直方图算法等

方法，以提高算法的效率和准确度[33]。LightGBM算

法的模型框架如图 5所示。
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2　缓倾斜矿柱强度预测数据集建立
 

2.1　BBM-DFN 缓倾斜矿柱参数化建模

针对缓倾斜铝土矿柱，研究其倾角、宽高比应当

结合矿山实际情况。将倾角范围设置在 5° ～ 30 °之
间，以 5°倾角为间隔，对同一尺寸矿柱模型设置 6组

不同倾角试验进行分类研究，缓倾斜矿柱模拟试验中

参数设计思路为

1) 铝土矿层厚度与现场实测的矿柱宽度区间，设

置矿柱宽、高度范围为 2～7 m。

2)设置 15个矿柱宽度，分别为：2.0、2.5、2.8、3.0、
3.5、3.8、4.0、4.5、4.8、5.0、5.5、5.8、6.0、6.5、7.0，设
置 9个宽度值，分别为 2.0、2.5、2.8、3.0、3.5、4.0、4.8、
5.0、6.0；在数组 (1,2,3,4,5)中选取 15个随机值，该值

为每个矿柱宽度对应的高度组数，在高度的数组中随

机选取上述随机数量对应的高度值。然后，按照倾角

间隔 5°进行宽高组合，生成双重随机的 200组宽高比

符合 0.5～3.0的参数化数值模型。

为控制块度和节理因素对尺寸效应的影响，在矿

柱内以 0.6 m为边长，生成 Voronoi中心点分布，统一

密度划分 Voronoi块体，然后以 Voronoi块体中心点

为顶点在块体内生成四面体，完成缓倾斜矿柱 BBM
模型的参数化构建。最后，结合三维离散元 3DEC中

的 DFN模块进一步剖分矿柱结构，从而建立能准确

反映节理裂隙分布特征的离散裂隙网络结构模型，如

图 6所示。

 

顶板

矿柱

底板

图 3    耦合模拟方法

Fig.3    Coupled simulation methods
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利用缓倾斜矿柱模型的参数化建模方法，以 3 m×
3 m×4 m的矿柱模型为例，展示 BBM-DFN矿柱模型

结构，模型中共包含 218个 Voronoi块体、11 412个

四面体、23个 DFN单元，具体如图 7所示。
 
 

插入DFN 生成
BBM-DFN

Voronoi中
剖分四面体

图 7    BBM-DFN矿柱模型

Fig.7    BBM-DFN pillar model
 
 

2.2　数据集建立

参数化建立了 200组 BBM-DFN缓倾斜矿柱模

型。为减少模拟过程中缓倾斜矿柱顶底板与矿柱的

接触面对其承载特性试验的影响，利用 3DEC和

FLAC3D程序在接触面进行耦合计算，其原理是识别

耦合接触面处 3DEC的网格点和 FLAC3D的区域面，

通过力和速度在耦合面节点之间的传递，可以更好地

模拟缓倾斜矿柱的渐进式破坏过程，研究缓倾斜矿柱

的承载特性与破坏特征，并将数值计算结果作为机器

学习矿柱强度预测数据集。

在矿柱模型力学参数的标定试验中，将矿柱和顶

底板均设置为弹性体，节理单元接触选择摩尔—库伦

模型，参数标定方法参照文献[27, 34]。顶底板弹性模

量设置为 64×1020 GPa，铝土矿力学参数的标定过程

如下：

建立标准尺寸的单轴压缩和巴西劈裂试验数值

模型，模型与边界条件设置如图 8所示，上、下板进行

旋转约束 ，采用位移加载的方式对上下板施加

1 mm/s速度，编制自动监测 FISH程序获取模拟试验

的应力−应变曲线。

参照文献[35]中铝土矿力学参数试验结果，采用

试错法标定铝土矿的力学参数，标定试验监测得到的

单轴压缩和巴西劈裂应力−应变曲线如图 9—图 10
所示。

标定结果与试验结果误差分析见表 1。由应力−
应变曲线与误差分析可知：标定试验结果与实验室试

验结果吻合度较好，说明缓倾斜矿柱强度准则、本构

模型和力学参数选取具有合理性。

标定试验所得到的岩块与节理力学参数见表 2。
参考文献[36, 37]通过实测获得某铝土矿的裂隙

产状、内部填充物、节理长度与间距等数据，并总结岩
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图 6    缓倾斜矿柱模型

Fig.6    Gently inclined pillar modelling
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图 8    试件边界条件和加载方式

Fig.8    Boundary conditions and loading methods for specimen
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体裂隙分布特征，如图 11所示。

BBM矿柱模型中，DFN圆盘分布特征依据上述

某铝土矿裂隙分布特征，见表 3。
矿柱模型的边界条件的设定为：矿柱顶、底板四

周采用法向约束，采用两端双向加载方式，上、下两端

同时以 2 mm/s的速度加载。模型与边界条件设定如

图 12所示。

监测缓倾斜矿柱承载过程中的轴向应力和轴向

应变行为。应力−应变监测函数的结束判定条件为达

到峰值应力后降低了 20%，此时矿柱的承载能力达到

极限，裂隙已贯通，矿柱处于失稳状态。

200组缓倾斜矿柱承载特性试验数据分布如

图 13所示，图 13a—图 13c表示每个矿柱影响因子与

强度之间的分布关系，其中 w 为矿柱宽度，m；h 为矿

柱高度，m；θ 为矿体倾角，(°)。 

2.3　缓倾斜矿柱承载特性与破坏特征分析

为探究缓倾斜矿柱的变形与强度特性，以 2.5 m×
2.5 m×3 m(宽高比 0.833∶1)为代表的“细长型”矿柱

和以 3 m×3 m×2.5 m(宽高比 1.2∶1)、4 m×4 m×2.5 m
(宽高比 1.6∶1)为代表的“矮胖型”矿柱承载试验为

例，如图 14所示，从缓倾斜矿柱应力−应变曲线分析

其变形与强度特性，揭示倾角效应与尺寸效应对缓倾

斜矿柱变形与强度特性的影响特征。

由图 14—图 15可知：缓倾斜矿柱的峰值强度受

倾角效应的影响，随着矿体倾角增加，峰值强度逐渐

下降。当 w/h < 1时，倾角范围在 5°～ 20°之间，其应

力—应变曲线发展趋势相近，且峰值强度下降相对缓

慢；当倾角范围在 20°～ 30°之间时，其应力−应变曲线

发展趋势相近，伴随着倾角的增加缓倾斜矿柱的峰值

强度发生陡降；当 w/h > 1时，倾角范围在 5°～ 30°之
间近似呈线性规律下降，整体发展趋势相对平缓。

对于缓倾斜矿柱而言，其峰值强度除受倾角效应

影响之外，尺寸效应影响机制也较为显著，伴随着宽

高比值的增加，矿柱峰值强度显著上升。 

2.4　缓倾斜矿柱影响因子敏感性分析

为进一步分析缓倾斜矿柱强度与影响因子 (宽、

高、矿体倾角)之间的内在联系，利用皮尔逊相关系数

矩阵绘制热力图如图 16所示，对缓倾斜矿柱强度影

响因子进行敏感性分析。

由图 16可知，将数据集按照矿柱宽高比值分组

进行参数敏感性分析，当 w/h > 1时，缓倾斜矿柱影响

因子敏感性的主次顺序为：宽度>倾角>高度，其影响

比重的比值为 1.196∶1∶0.857，影响因子敏感性的主

次顺序与文献 [38-39]等得出的结论一致；当 w/h <
1时，缓倾斜矿柱影响因子敏感性的主次顺序为：倾

角  > 高度  > 宽度，其影响比重的比值为 2.77∶1∶
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表 1    误差分析

Table 1    Error analysis

参数 标定结果 试验结果 误差/%

抗压强度/ MPa 75.31 73.75 2.12

弹性模量/ GPa 25.76 24.65 4.5

抗拉强度/MPa 4.18 4.32 3.2

 

表 2    矿柱力学参数标定

Table 2    Calibration of mechanical parameters of pillar

节理参数 数值 块体参数 数值

节理法向刚度/ GPa 500 容重/(kN·m−3) 27

节理剪切刚度/ GPa 80 弹性模量/ GPa 64

节理黏聚力/ MPa 10.2 泊松比 0.22

节理内摩擦角/(°) 25 — —

节理抗拉强度/ MPa 7.6 — —
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0.677，与考虑宽与高幂指数的经典矿柱强度理论公式

所得出的结论相一致[40]。因此，将矿柱承载试验结果

作为数据集供机器学习算法应用于缓倾斜矿柱强度

预测具有可靠性，进一步验证了缓倾斜矿柱强度准则、

本构模型和力学参数选取的合理性。 

3　缓倾斜矿柱强度预测模型

从 200组缓倾斜矿柱数据集中选取矿柱尺寸参

数宽、高以及矿体倾角作为机器学习算法的输入特征

值，将矿柱强度作为预测输出值，分别构建 SVM、

ELM和 LightGBM 3种缓倾斜矿柱强度预测模型。

机器学习流程如下[41]：

1)数据集预处理。在建模之前，采用数据归一化

处理将特征值全部缩放到[0,1]，从而避免数量级差异

带来的预测偏差。

2)划分数据集。采用 4−折交叉验证，将数据集随

机拆分成 4个不同的子集，其中 3个子集作为训练集，

另一个子集作为测试集。

3)利用 python语言实现算法的编写，分别加载训

练集对模型进行训练，随机组合测试集验证模型

性能。 

3.1　SVM
加载训练集建立 SVM模型，对于测试集，矿柱强

度的预测值与数值模拟结果拟合效果以及两者之间

拟合程度的决定系数如图 17所示，两者之间整体拟

合效果较好，对于部分数据的预测存在偏差，其决定

系数 (R-Square，R2)R2 值为 0.921。 
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图 11    裂隙调查统计[36-37]

Fig.11    Statistical map of fracture survey[36-37]

 

表 3    离散裂隙网络特征参数

Table 3    Discrete fracture network feature parameter

节理产状 倾角/(°) 间距/m 倾向/(°) 密度/ (条·m−3) 优势节理走向/ (°)

以闭合型为主 50～90 0～2 220～230、270～280 0.24 0～10、40～50、300～310
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图 12    矿柱边界条件及加载方式

Fig.12    Boundary conditions and loading methods for pillar
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3.2　ELM
ELM模型完成训练之后，对于测试集，矿柱强度

的预测值与数值模拟结果拟合效果以及二者之间拟

合程度的决定系数如图 18所示。由图 18可知：二者

之间拟合效果不如 SVM，其 R2 值为 0.911。 

3.3　LightGBM
LightGBM模型完成训练之后，对于测试集，矿柱

强度的预测值与数值模拟结果拟合效果以及二者之

间拟合程度的决定系数如图 19所示。由图 19可知，

二者之间拟合效果欠缺，其 R2 值为 0.905。 

3.4　SVM、ELM、LightGBM 模型评价

采用判定系数 (R2)、可解释方差 (REVS)、平均绝

对误差 (RMAE)和均方误差 (RMSE)等回归类评价指

标[41]分别对 3种机器学习模型进行评价，见表 4。
由表 4可知：在缓倾斜矿柱强度预测性能方面，4

种模型评价指标可以证明模型预测性能关系为：

SVM > ELM > LightGBM，因此，SVM算法预测性能

最佳。本文中 200组缓倾斜矿柱强度数据集，归属于

小样本数据量，符合 SVM在解决小样本与复杂非线

性问题处理上的优势，而 ELM与 LightGBM预测性

能相对偏差，与水平铝土矿柱结论一致，因此，神经网

络与集成学习 2种机器学习技术并不适用于小样本

的硬岩矿柱强度的预测，这也符合文献[26]总结出样

本数量是影响机器学习模型性能的重要因素，神经网

络与及集成学习技术更适用于中等与大样本数据的

处理。 

4　进化算法优化支持向量机

SVM模型在缓倾斜矿柱强度预测中的性能仍存

在偏差。为进一步改进 SVM模型的预测能力，引入

2种机器学习优化算法，并结合使用，构建一种适用于

缓倾斜矿柱强度预测的改进模型。 

4.1　遗传编程 (GP)
GP是一种优化算法，继承了遗传算法的基本思

想，对染色体的结构和变异方式作出了改进。GP算

法在非线性函数逼近与机器学习算法优化等问题的

处理方面性能优异[42]。

GP算法由回归器、分类器和转换器 3部分组成，

分别用于回归预测、分类算法以及特征转换。gplearn
是一个新兴的适用于 GP算法的成熟 Python库，基于

gplearn的符号回归是为数不多的可解释型机器学习

算法，并且可以实现特征的衍生。笔者利用 gplearn
库编写 GP算法，对 SVM的特征值进行优化，以提高

算法的预测性能，并且利用 GP算法的可解释性拟合

出缓倾斜矿柱强度公式。

GP模型参数标定：每代程序数 2 000，进化代数
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取值 20次、每代择优数量取 10，惩罚权重 0.000 5，交
叉变异概率 0.9。利用 GP中转换器部分对 SVM模

型特征值进行了优化，利用新特征再次训练 SVM模

型，矿柱强度的预测值与数值模拟结果拟合效果以及

二者之间拟合程度的决定系数如图 20所示，二者拟

合效果得到了明显提升，其决定系数 R2 为 0.959，相
比 SVM提升了 3.8%。 

4.2　改进的量子粒子群优化算法 (IQPSO)
GP算法优化的本质是对 SVM模型特征的衍生

扩展，新特征使模型性能得到优化。为进一步提高

SVM模型性能，除了特征值之外，还可以对超参数进

行优化。将 IQPSO和 SVM相结合，其本质是利用粒

子群算法对 SVM的超参数进行优化，借助其全局寻

优能力实现超参数的选取[43]。

IQPSO算法参数标定：种群规模为 300，迭代次

数 200、惯性权重区间为[0.4,0.9]，权重衰减系数取值

0.9，矿柱强度的预测值与数值模拟结果拟合效果以及

二者之间拟合程度决定系数如图 21所示，二者拟合

效果相对GP−SVM进一步改善，其决定系数R2 为 0.976，
相比 SVM提升了 5.5%。

采用 R2、REVS、RMAE、RMSE 回归类评价指标 2种

优化后的模型指标值见表 5。
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表 4    SVM、ELM、LightGBM 模型评价

Table 4    SVM、ELM、LightGBM modelling evaluation

指标 R2 REVS RMAE RMSE

SVM 0.921 0.926 1.225 2.367

ELM 0.911 0.911 1.347 2.806

LightGBM 0.905 0.906 1.314 2.845
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由表 5可知：在缓倾斜矿柱强度预测性能方面，4
种模型评价指标表明，通过 GP对 SVM特征的优化

以及后续 IQPSO对 SVM超参数的优化，均使得模型

性能得到明显提升。因此，结合 IQPSO-GP-SVM算

法进行缓倾斜矿柱强度的预测具有可行性，构建了一

种缓倾斜矿柱强度预测模型，并建立了矿柱强度与其

影响因子之间的非线性映射关系。 

5　基于符号回归的缓倾斜矿柱强度表达式

符号回归是一种可解释的机器学习方法。其优

点在于无需依赖先验知识来为非线性系统建立符号

模型，而是使用遗传优化算法与进化策略来进行搜索

和优化，通过搜索和组合基本数学运算符和函数，自

动构建出模型的数学表达式[44]。

IQPSO-GP-SVM矿柱强度预测模型是复杂、高

维度的非线性模型。可以借助 GP算法来获取一个能

够完全反映此非线性系统动态特性的符号表达式，帮

助发掘数据之间的相互关系，用于预测新样本、回归

分析、模型解释等。

基于 gplearn库编写 GP算法，利用回归器部分对

符号库进行扩展，除基本的数学运算符号外，加入三

角函数、绝对值、平方根等。然后，利用回归器自行组

合函数与符号，将矿柱数据集分组进行符号回归构建

出模型的数学表达式形式。

当 w/h < 1时，

S =
(
cos (sin θ1)

0.049
−3h1+2w1

)
− cos [max (w1,h1)] (2)

当 w/h > 1时，

S = cos h1

(
2
√
|w1−0.912|+ cos h1+ y

)
y = cos h1

∣∣∣∣∣ sin (sin w1)+ cos θ1
0.049

∣∣∣∣∣ (3)

式中：w1、h1、θ1 分别为 w、h、θ 经[0, 1]归一化后处理

的值。

GP模型中缓倾斜矿柱强度的预测值与数值模拟

结果拟合效果以及二者之间拟合程度决定系数如

图 22所示。

通过 GP模型建立了最佳拟合式，模型性能的评

价指标见表 6。
由图 22和表 6可知：由 GP模型建立的缓倾斜矿

柱强度表达式的 R2 值分别为 0.948和 0.931，拟合效

果较好，证明 GP模型对铝土矿柱强度预测问题较为
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Fig.20    GP-SVM strength prediction model of inclined pillar
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表 5    SVM、GP-SVM、IQPSO-GP-SVM 模型评价

Table 5    SVM、GP-SVM、IQPSO-GP-SVM modelling
evaluation

指标 R2 REVS RMAE RMSE

SVM 0.921 0.926 1.225 2.367

GP-SVM 0.959 0.959 0.908 1.286

IQPSO-GP-SVM 0.976 0.977 0.465 0.862
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适用。
 

6　讨　　论

为进一步验证机器学习—数值模拟相结合的强

度预测方法的可靠性，将基于 GP的符号回归表达式

(2)、式 (3)分别与 2种经典矿柱强度理论对比分析：

JESSU[18]公式

S = S 1(1−0.007 7θ) (4)

DAS[4]公式

S = S 1

1− [
1− (cos θ)2.4(sin φ)0.8

] ( H
w/h

)0.04 (5)

式 (4)、式 (5)中水平矿柱强度公式选用文献[27]
中修正后适用于水平铝土矿柱的 ESTERHUIZEN公式。

S = 0.65σ0F
w0.30

h0.59
(6)

针对水平铝土矿柱，课题组前期研究已揭示 F 值

随宽高比值变化。当 w/h < 1时，F 取值为 0.8～1.0；

当 1< w/h < 6时，F 取值为 0.6～0.8；当 w/h > 6时，F
取值应小于 0.6。

将水平铝土矿柱强度式 (6)带入上述 2种经典的

矿柱强度公式 (式 (4)、式 (5))中得出式 (7)、式 (8)。

S = 0.65σ0F
w0.30

h0.59
(1−0.007 7θ) (7)

S = S 1

1− [
1− (cos θ)2.4(sin φ)0.8

] ( H
w/h

)0.04
S 1 = 0.65σ0F

w0.30

h0.59
(8)

式中：σ0 与 φ 的取值依据铝土矿力学参数的标定结果，

埋深 H 为 200 m。选取缓倾斜铝土矿柱强度数据集

中部分数据，分别代入式 (7)、式 (8)与 GP符号回归

表达式后，强度值对比见表 7，其强度误差分析如

图 23所示。

由表 7与图 22可知，当 w/h >1时，JESSU公式强

度值与基于 GP的符号回归表达式预测值相近。当

w/h < 1时，JESSU公式强度计算值偏高。因此，利用

GP符号回归表达式修正式 (6)中 F 值，使其适用于缓

倾斜铝土矿柱强度计算。当 w/h < 1时，F 取值为

0.7～ 0.8时，两者强度计算值相近；当 1 < w/h < 3时，

F 取值应为 0.6～ 0.7。且当矿柱宽高比一致时，F 取

值随倾角增加而减小。

对于 DAS公式，当 w/h < 2时，JESSU公式强度
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图 22    GP模型预测性能

Fig.22    GP model prediction performance
 

表 6    GP 模型评价

Table 6    GP modelling evaluation

指标 R2 REVS RMAE RMSE

GP(w/h < 1) 0.948 0.949 0.462 0.286

GP(w/h > 1) 0.931 0.940 1.264 2.617
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值与 GP预测值相近；当 w/h > 3时，二者误差较大。

因此，DAS公式适用于计算宽高比值小于 2的缓倾斜

铝土矿柱。

经典理论矿柱强度理论与 GP预测值对比结果表

明，可以应用 GP模型评估矿柱强度，DAS公式适用

于计算宽高比小于 2的缓倾斜铝土矿柱，并修正了

ESTERHUIZEN公式的 F 值，使其适用于缓倾斜铝土

矿柱强度预测。因此，采用参数化建模、数值模拟和

机器学习相结合的方法，建立缓倾斜铝土矿柱强度模

型预测其强度值是可行的。除铝土矿柱之外，此矿柱

强度预测方法具有普适性，拓新了倾斜矿柱强度预测

的思路。 

7　结　　论

1)矿柱承载试验模拟结果表明，倾角与尺寸效应

对峰值强度影响较大。随着矿体倾角的增加，矿柱的

强度值显著下降，不同宽高比的矿柱在受倾角影响时

表现出不同的特征。当 w/h < 1时，倾角在 5°～ 20°范
围内，矿柱强度的下降相对平缓；当倾角超过 20°时，

强度值发生陡降；对于 w/h > 1的矿柱，倾角从 5°～

30°范围内的强度呈线性线性下降。与水平矿柱保持

一致，缓倾斜矿柱的强度受宽高比值影响也较大，伴

随着矿柱宽高比增加其强度显著提升。

2)由矿柱影响因子敏感性分析可得，当 w/h <
1时，缓倾斜矿柱强度影响因子敏感性主次顺序为：倾

角 > 高度 > 宽度；当 w/h > 1时，其影响因子敏感性主

次顺序为：宽度 > 倾角 > 高度。此结果验证了以数值

模拟结果作为矿柱强度数据集供机器学习模型预测

矿柱强度的可靠性。

3)模型评价指标表明，SVM模型为最佳矿柱强

度预测模型 (R2=0.921； REVS=0.926； RMAE=1.225；RMSE=
2.367)。通过结合 GP与 IQPSO  2种优化算法对

SVM的特征与超参数进行优化，使得 SVM模型性能

显著提升 (R2=0.976； REVS=0.977； RMAE=0.465； RMSE=
0.862)。优化后的模型拟合效果较好，可有效用于缓

倾斜矿柱强度预测。

(4)利用 GP的符号回归方法建立了缓倾斜铝土

矿柱强度表达式，通过模型评价指标及经典的矿柱强

度理论对比验证了此方法的可靠性，并修正了 ES-
TERHUIZEN公式的 F 值使其适用于缓倾斜铝土矿

柱强度预测。数值模拟−机器学习矿柱强度预测方法

具有普适性，拓新了倾斜矿柱强度预测的思路。
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