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Abstract: Pillar strength is significantly affected by inclination, making accurate prediction of inclined pillar strength cru-
cial for the safety of underground quarries in inclined ore bodies. To address this, a pillar strength prediction model is es-
tablished by integrating parametric modelling's flexible interactivity, the scalability of numerical simulation sample data
and the data-driven advantages of machine learning methods. A parametric modelling program for gently inclined pillar
was compiled based on the Grasshopper platform in Rhino, furthermore, the fracture production parameters of bauxite
were incorporated into a 200-group Bonded Block Discrete Fracture Network (BBM-DFN) pillar numerical model. A
coupled FLAC®-3DEC simulation method was employed to conduct tests on the bearing characteristics of a gently in-
clined pillar, based on the rock mass and joint parameters that had been calibrated by the trial-and-error method, monitor
and build a machine learning gently inclined pillar strength dataset and verify its reliability. Support Vector Machine
(SVM), Extreme Learning Machine (ELM) and Light Gradient Boosting Machine (LightGBM) were used to construct the
model for predicting the strength of gently inclined pillars. Additionally, two optimization algorithms, Genetic Program-
ming (GP) and Improved Quantum Particle Swarm Algorithm (IQPSO), were used to enhance model performance and es-
tablish a non-linear mapping relationship between the influencing factors and the strength of the gently inclined pillars.
The study indicated that the orebodies inclination effect significantly impacts pillar strength. Specifically, pillar strength
decreases markedly with increasing inclination for pillars of the same size, with variations depending on the width-to-
height ratio. For w/h < 1, the sensitivity order of influencing factors on gently pillar strength was as follows: inclination >
height > width. For w/h > 1, the sensitivity order of the influencing factors was as follows: width > inclination > height;
SVM is the best model for the gently inclined pillar strength prediction (R*=0.921; Rpys=0.926; Ryap=1.225; Ryse=
2.367), and the model prediction performance is further improved after combining the optimizations of GP and IQPSO al-
gorithms (R*=0.976; Riys=0.977; Ryo5=0.465; Rysz=0.862). The expression for the strength of gently inclined bauxite pil-
lars was obtained by symbolic regression based on GP. The accuracy of the model was tested against the classical theory

of pillar strength, extending the idea of predicting the strength of inclined pillars.
Key words: parametric modelling; numerical simulation; machine learning; gently inclined pillar; strength prediction
model
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Table 3 Discrete fracture network feature parameter
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Table 7 Comparison of JESSU, Das formula pillar strength values with GP predictions
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1 2.5 3.0 15 18.60 21.06 117 18.95 1.8
2 25 3.0 25 15.74 19.08 17.5 15.21 34
3 3.0 4.0 15 17.63 19.51 9.6 16.84 4.7
4 3.0 4.0 25 14.97 17.63 15.1 13.90 7.7
5 3.0 2.0 15 2331 25.43 8.3 21.87 6.6
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