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Image data-driven intelligent recognition of permafrost strength and
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Abstract: Ensuring the stability of the frozen wall is critical in freezing construction, but traditional onsite detection meth-
ods, due to their intermittent nature, fail to provide real-time monitoring, limiting timely responses to potential catastroph-
ic events. Deep in-situ precise detection of frozen soil is an effective means to reveal the mechanisms of major engineer-
ing disasters in frozen walls and to provide disaster early warning. A convolutional neural network-based image data-driv-
en intelligent recognition method for frozen soil strength is proposed. This method involves capturing multi-angle images
of 93 sample specimens and conducting subsequent uniaxial compressive strength tests. The labeled sample images and

actual strength data, combined with image data augmentation techniques, were used to construct the image dataset re-
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quired for training the deep learning model. A 34-layer deep residual network (ResNet-34) model using transfer learning
was employed. By comparing the training processes and test results of different models, it was found that the ResNet-34
model performed the best, achieving an accuracy of 92.8% with no signs of overfitting. The deep learning model was ap-
plied to identify the influencing factors of frozen soil strength, including soil type, temperature, and moisture content. It
was found that the model effectively recognized these three variables, demonstrating the scientific validity and reliability
of the model in identifying frozen soil strength. In addition, the model’s performance under different disturbance condi-
tions was studied by simulating typical interference scenarios and analyzing their impact on the model’s predictive per-
formance, providing a basis for future improvements in data augmentation strategies and model optimization. Grad-CAM
(Gradient-weighted Class Activation Mapping) interpretability analysis method was introduced to reveal the internal fea-
ture extraction process of the convolutional neural network in the frozen soil strength recognition task. It was found that
the model could extract and analyze key image features of frozen soil, enabling rapid strength assessment. The research
results provide a new approach for real-time monitoring of the frozen wall state and early disaster warning, offering tech-

nical support for the safe construction of freezing projects.
Key words: frozen soil; Uniaxial Compressive Strength (UCS); image recognition; transfer learning; model explainab-

ility analysis
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Table 1 Uniaxial compressive test program for artificial

frozen soil

A% 5 TREE/C TR /%
-10
N 22, 25, 28, 31,
1~21 Pt -15
34, 37. 40
-20
-10
N 15, 17, 19, 21, 23,
22~51 e+ -15
25, 27, 29, 31. 33
-20
-10
15, 17, 19, 21,
52~72 [ -15
23. 25, 27
-20
-10
11, 13, 15, 17,
73~93 [ -15
19, 21, 23
-20

R R S ) O 2L oK 350 R0 B R, 5 B
B R EE . IR AE-10, —15 F1—20 C =Fhiid
FE, A 11%~40% 057K 3T 4T, DARFTIX LA
R L T2 R B2 TR T, TR 209
FRFN 2 R Ve 0 28 Ak S SR R AR AL 1 2 A AL
()27 ST REAS, 5 BRSSO Ao M EON R R R RS
AR BER BEREAE, DT ER SR A B

IR 4 Fh IR T BRI T KT
B J5 i SO RE AR B AL S INAAZE 105 C 1EH
DA ORILAE 22 /0 8 h (B (] ELABD RS Tk, £ 00 1
B, IR KR (R Do N RIE R

ARSI, AR PG s I T A T, LIRS
KPR o RA 3 BRGNS 3, i T A
#4150 mm, & EEh 100 mm 9 EIREAOGRRE . 4558
AR 7 (R R EL— A le  BT ARE R b, Ik
TR A IR 3~6 he FEPSERUG, KHEE
BEEL AR HUH o B 20 T IR S i T TR
RIS AR T, FE1T 24 h IEIR R4 R B4
T O T R AAE S5 2L AT I8 2 HAR P LR, A
TARIE 045 S e P
1.2 FIBEGREFRZX

AU EMG R AT F 2119 15 45 R JE Bl D7500 %065
U ROGIEARNL . XA R R LN 2 088 J1,
BOR T ST = i T . 7R RUGCR SEad fE v,
HIVEIE IR 8 R — A N TR LIRS, S B
FRAZALAG, ] LED T4, 875 G5 B Fn g sk 48
P, 7 G0 B R . A R AR R 1Y R B
AR A A B RS, 6 R A T4, DA 7 35 5L
FMFRAE M ZREME . XA BY T 4 T e 3R 1 K i
FRIE S AT, R I S0 AP At 1 v o o Y 5 5
o TERMG AR SERUR , S IR RE BEA T 2T R 35
FERE o A 2 1% e (i R DK 5 RS B 1 A T
FRidE, WA 2 iR

=10, —15, =20 C WRE T, X5 KR 1%~
40% BYIRFETEAT S Al R 40 R 00 . AR UGB Sl & T
93 MMAKE . R FH O fif B85 B 2, JTIG X ]
RAZEIPRZ . RH WDT-100 7% iR 56 HLHRAE
PEAT Bt R AR G, B AR R B K 107 min”', 56
SER AT E RN TR R 20% BN AR BT 15%. 13
HLEE 15 s B SREZIEIF s AR 1R 11 AR fh 2K,
FEIE AR BT R BR B . R TR R PR, (R R
HIRYR AL £ 30 AUEE R - n AR i 2k, wnlEl 3
o BILUE H IR Bt 0 38 1A B B A IR 1 R
IR

A1 R B R 5 B B o A &L 4 IR
HRAE R 4 PR R R AR FE SR 1 1 22 5 R4 A 8K
Tt 43 A5 5 0 B A B T A5 YRR IR B 5 AR AR AR R,
BRI B TE 6 MPa; YR R 2 + A ik 1
A5 BE S o A A SR R o, BT BE R
£E7F 3 MPa 2247 W LR A A SE TP TE 4 MPa £247 o
1.3 BEGBEENEILS %R

TR 27 20 ) MG A2 R FH R B i 2 X 4%,
Jo H R B A2 2% (CNIN) K e T F1 B A (R4 25
) — RN IR . MR SR Rl Tz
AN Z — o T 3650 R FH R BE 2 2 6 7 2R AT
55 B H, PAIEAT N T 4 i e He o B 0 R 1,



2764 #H % F % 2025 445 50 %

(a) e+

(b) W E L

(c) WLk

@Bt
Bl IR 93 ZRAE
Fig.1 Test 93 groups of specimens
ARWFFERR LT CNN 7, ARG H TR B0 B rl Lol & CTCRRZ M2 5k A48 UCS 1Y%
B (UCS) ¥ AN TVR EREARITIAARRI S S, R4 SL{E S0, A0 i TR 2= ) h i 22850 R RS pR T




IR A58 BT G S B A R i R RE TR 7k 2765

2.00 MPa

1.76 MPa 2.19 MPa
K2 B R e (R B i
Fig.2 Partial image data and its peak intensity labeling

ANl L b HAR AR r 28 I3 2,

R2 HIEEHTREIZER
Table 2 Different categories of the dataset

p 1
j §10 5
T N
S
k% 0’ W
— 15% —17% — 19% —21% ——23%

—25% —27% —29% ——31% ——33%

3 IR I AR 2R

Fig.3 Stress-strain curves of silty clay soil

10

5 /MPa
o IS

0 L L L L
/0T S/ STV TR S V¢ TR -t
Bl 4 ARITR AR I i R o)A

Fig.4 Data distribution of compressive strength

FETA BRE N, B UCS 13 S E R 4 T T B 8
DX i), A DX )6 07—~ 2R 1, DA T 448 3 5 5 4 e £k
oy R TR, T S BRI G T R A S A
ANEIAE, 2 RN 5 B R AT T AR SR SR 4y, LAREAY
b S B () S B A3 A o X R o AR AL AR Y
it B B ARAR BT B SRR IR AR, G B AN T A
MRS RIPERE o 7F H S TSR B X R SR FH /N IX
[V FE (A 2.6~2.7 MPa), LA kS B s W AEPi R i
AR X [R], 38 >S4 GG (40 0.5 MPa), AR IERE
AR FES P AR AL A e e

T ST RE LR UE R £ A S RS B R A A 2
ik, 25 By 22t KA /N BT He 5 B, 75 315 3 1Y

2.33 MPa

2.68 MPa 2.78 MPa 3.24 MPa

b DRI B g URIIE B
MPa FEAEL MPa FEAEL

1 1.7~2.0 7 7 29~34 5

2 2.0~2.1 6 8 34~38 6

3 2.1~23 5 9 3.8~4.1 8
4 23~2.6 8 10 4.1~4.6 8
5 2.6~2.7 5 11 4.6~5.0 5
6 2.7~29 9 12 5.0~5.4 5

HR A2 2 M5B 1B B2 25, KR AR B TR
+ G R FR T RS, S BIA 12 AT S0k e A TR
T o Ay ikt S 20 ) PG B0 i A 2 S M AR 1) 32
B 77, 32k X BRSSO e v i R AT IR, . BT
FNZE T E G s AL 2R, B 120 i G S e
T 200 5K, FeZA53) k2 400 SRR SRS H
FIF Python i 7 £icdha 42 v i MR B AL 43 SR )N 25
SRR . AR R REUT 80% MREA T
YK, 20% BIREAFH T 1ZK043 Lo REA AR R
FEN Gt A v Fe a2 >, [l st {4 88 2 0 0 B8 FH T 56
TERRL Iz AR s o BRI R4 &2 1920 5KIA
14, AR 6, 5 2 480 SKIEIR .

2 ETEHRMEMNEREREER

FEVTAER, AR 22 4% (CNN) AR R IR B
22 FORFTARE S ) B 0, © S K T
H ARSI R A A S . X Fp i 2P g it T — Ao
N TR R ELA R R A AN A3 A PR
2.1 HRMEMLE

2R ML) CNN BB B e e A2 00 1+ 5 5L
P, 3 R R AR . 8 N — R 510
WA (WRRETUL) X A BRI T B FRAE, $EH
BRI RAE o U8 T s 23 G 00 A5 v 118 2 82 2
ST 6 Ty A NN @ 2 L 11 T S O 5 20 =3 1
AT AR AR e, DS I AR Rt . PR A



2766 # %

= #® 2025 4E45 50 %

)2, T REAE L R 23 (R 4E B2, A3 52 20 B, ml st
PEBURFHIE EEAE B . AR 2SR, e
L FURTHL AR A TR A R AR [ R Py — i e i, IO 4
AR R S 2, T R S . E
P 28 3% B A PG B T 485 SR, 38 5 f ) softmax pRZL

Residual learning block

| |
| X |
| |
' I
| g _
: Fx) Weight layer \:: : T T T T I g
| lReLu l‘E, : % Maxpool é éﬂ éh éh é
: Weight layer é ) Lo) 8 8 8 | (3
| = e 22 %% 9

X
I | o en on o o n
| |
| |

| 3x
‘\64\
‘\6:1
=== _ NN
- } D— -
Output size
Input size Output size 104x104
416x416 208x208

PEAT 3 S P AR AR A T . s A W=
HOFS5HE, CNN RES A R0 MR - 1 PRSI 2
FHIE, FEAETR 50 AT 55 S AL S RO PERE . AT
TS FH 9 2 B 22 I 28 25 F40 O ResNet-34 [ 465, JLRFAIE
FEMEH AN TAERAR AN 5 s

FNNN

| BEEEER
- = = a4 & & o n a0 o0 Avell”?ge
=== =1 =121 = > = ¥ ¥ pooling
=) =] =
88|58 +-8 8 § 88 & 5-8 5
O O O ON fON FON O O O U O =
N o0 o N 0 oo o D O o o
X X X X X X X X X X X
N o o N o0 o ¢ O o0 o
3x 5% 2%
‘\12j; 256 512
Output size Output size Output size
52%52 26x26 13x13

€l 5 ResNet-34 MIZ545#
Fig.5 Structure of ResNet-34 network

22 EBFEIWMEMLE

TEEUR AT 55 b, B R 28 I 25 45550 L 22 F A
T H s ERE, JUHJETE ImageNet X — KB A
SRR AR A, Hord ONIN BB i I 2k, Al
Ui2e 2] T EMR Y R B R E L) 2R E . ST,
ERE T RIS AL T —Fhm i ik, ARV
FIH © 24 7F ImageNet 2045 4 - il Il 25 %) 25 8. CNN
PR A 2 S IR SR PO 3 e A 4 e 3 A T A
R R E 2 IR S F A S HL, v LIRS HEA T AL A
I, AT I W T4 09 1 FH 37 55, T N TR - sl
Fa B AR e TR

mE 6 s, W ARERIFE R IR 55 e 42ess
RATAFE AN UK . R RB AR KD TR
2 5T DI IR B 2 S AR T MR b e 8 . X vk

__ Fl S

ﬂ IR
[

A ZEREAR T T 46 I A58 78 T 5 1 5080 £
THEGEIR, [t B i 7 AR R A1 55 L P R A
ZAEETT .
2.3 i ResNet-34 £5#4

TR 5% 2 W 4% (ResNet) J& 1 #k WF 5% B A HE
SR 2015 4F 5 H A T E 27 > L, & 7F TmageN-
et RIS T F ST, ResNet T 5| A “F2=
R R T IR)Z I ZMERT IR, ResNet 5142
FEAR TR AR Y, Ho ResNet-34 8.8 1 s G
FMIR A ek 2 ] Y BRAL P, (LA 1 2 MR O 2
55 B B

JER ) ResNet-34 2% softmax JZ 432850k
1 000, 2485 J i ok —A~ A 223G I 246 4y 2 kg,
25K R[512,1 000], o A4 25 Ak AR —)2

4 N

FUbRAE 55

A\
! I
: 1
' I8
i YR /N D SN 2]
! I
a r
| [
| LB
! goE | g
N — g . J
Ko TR :IRE

Fig.6 Schematic diagram of transfer learning



553

IR A T PGB X s A4 R 58 B2 RE UM O 125 2767

A2, LA 512 A heon, NIk 2 )2 I 40
FL 51300 M8 R LR RATSS, 432820
R 12, J5hH ResNet-34 W45 (Y 152 )2 S5l £,
FEABEHRE SR A HER K . (R, A SCXF ResNet-34
W 4% 1 4 42 )2 R AT T R o o DR AR A5 A A
[512,12], Uit 5 RS HUA 6 156 4, Bk
PN T VR B B GIE 55 o 76 Be Hil AR (9 88 S 50T
Batch Size J& 48 5 Ui ARSI T U 25 B9 B PR FEAC KL
i, BUA 64, AL BREGEIL Adam I 1L%%, 1155 BHE
PR R S R 6 TR 2R 2D i, T HLAL
EIF R A AR N LY . AR SO RS
HLBCE T R R L 3.

R3 REEENFRIE

Table 3 Development environment for model building

BREE RS 5A
BERSE Windows 1 06441/
WG LiE AMD Ryzen 75800H
W 16 GB
R Nvidia GeForce RTX 3060
PFHE S Python 3.10.9
TRBE 2 S HEZR PyTorch 2.0.1

3 FreENIRA R IGIE

BT O 8 U BRI BB, X - i B
VAT BER A, T XN ES RIS, X%
R TEON A T IE
31 ERIEEIRANER

TE 0 U a5 v, a3 50 56 I 22 Rt R /)N
Batch Size(4l1 32, 64, 128), #fiTA Batch Size & 64 15
Y)Y 25 B A e R Bl e . % 4 IR TH] Batch
Size XA IR AP IR i 52 m

R4 FERMEXRP TR END LKL RIFMN
Table 4 Evaluation of classification results of test set under
different Batch Size

i W) HER /% BRACLR AP it /s
32 87.9 36.23
64 92.8 45.07
128 90.3 51.33

TEVREE "% 2] Hh, Epochs A7 57 43 [ 5~ 54
WAL, EHEIEOT, % Epochs HYE LGN, 45
IR RE 23 W de T, LB B B A . SBR[
(%) Epochs #4725, $R B (A5 AL 14 |- R B i

47 Epochs £, XA Bl TS it 5 8URG .

5 1€l 7 A [ Epochs T 9 I 25 ith £8 ] 71, 24
Epochs A 50 1 100 B, 45125 sREE AR U8, H 2 P04k
25T R AR, SRR A B e FEMERE . 7F Epochs 35
1 150 A1 200 B, 453 B HICEL, Hak®) T e dErERE.
{38 3 I B TR R XS HY, Epochs A 150 B B9 HERf
F . BE YIRS N, SRS A] RE 2510 AR U 2k
EAE A M RS RIS FEAS R ARRAIE, T AN S22 ) 13 i
FRLCFIELAEE . B3 5 WA, Epochs i 150 B,
AR 3K in e o 1Y o B AR IR A7
150 /> Epochs ) ResNet-34 L RUAH SCH:, LUE Ji5 22
RAWFE

100 F
80
=
; 60 ®
40 -
20
0 50 100 150 200

Epochs
K7 BRI ZREEAEANE Epochs T HIIIZRES

Fig.7 Training results of model training set under

different Epochs

%5 A[E Epochs TR ER 2L ERITM

Table 5 Evaluation of classification results of test sets under

different Epochs
Epochs HET /% H 1 2/% Fy
50 71.0 69.6 0.692
100 82.5 82.5 0.825
150 92.8 92.5 0.926
200 89.0 88.3 0.882

T FORSTRFIA [ 3R AR A4

AT Bk Fr e A A B AT R, XT HE ResNet-18 Fll
ResNet-50 M4% . 76 A0 A A B 2 I ZREL &, 4
Sl %} ResNet-18, ResNet-34 Fil ResNet-50 #f 17 1)1 24,
DI OR LU 2 P . i B 1) e S 80 1 — B
ALAES 2] 5 R/ NN ZRAe S, R T iE— 205k
TR FE W 265 A 35T 4% 40 4 FRUBR 22 I 28 B AR 3, 51 A
AlexNet BIRIVEATXT L. @1t 5 AlexNet 1 RE LR,
AT LR BT R 7 V% B % 25 T 44 7 Vs i R U v
IV I FILH . A5 BN [ HY Y PEREFE AR UL 3R 6, 45



2768 # %

F #®

2025 4F55 50 4

7R ResNet-34 78 3 /73 58 45 IO RUCR MR J&
Y.
F 6 FREEBMINER S KEREN
Table 6 Evaluation of classification results for different

model test sets

TS ) 2 Y HETI /% 171 2/% F
AlexNet 46.67 46.7 0.459
ResNet-18 91.04 91.0 0.910
ResNet-34 92.80 92.5 0.926
ResNet-50 86.25 86.3 0.862

K 8 /R IRIE TR /& 150 4~ Epochs fit) ResNet-

34 FEAAE IR AE P PR RE R L . TRVE AR B — R
AT H, TR SR a1, b g —
FAARRE LA, —FICRAR BT (2] . 78
AR E AR, Xt F 2 AR SR A B T 1
il RS AR R S, X A2 b AR s T R DR Y
Bl il . AEFEREE R AREE 20, Ble

= 40
5.0~5.4 | 2 38
4.6~5.0 | 38 2 |35
4.1~4.6 | 2 37 1
30
3841} 25 1 31 1
34381 1 37 1 1 25
= 29341 38 2 e
a 20 %
K2729F 2 1 37 il
26271 139 415
23-2.6 1 137 2
10
2123} B 1
202113 B7 15
172088 1 1

QN MHM . 6 A 9 X & N 6,9, %
,\;»'Qﬁ"\p"%/q"bﬁ",\/’»'q;"b‘b'%)"\)"‘O/L"Q/‘)'
ST AT A7 A al gl X At N o

TiM{E/MPa
P8 ELE G W = 8] A TR VA FE R
Fig.8 Confusion matrix between true and predicted values
HRPETR VA AR PR 2R, A AL 5 480 5K IR Lo J&
BUR, Horb 444 SKGERRIRG . TREE2= I BALTE 2.6~

2.7 MPa 251 i) N R Be £, IE BRI 39 3K KA,

ME— 1R 50 28 R A AEAH SR S0 2.3~2.6 MPa, 3.8~
4.1 MPa ZE5I| SO Fe 22, TERRIEON T 31 5KkIE F.
KEBOEHE S PAEXHAL b, RIRRIYE 2B
T RERSHER TN B
3.2 RIEREHERAALEIE

F 28 N T 05 A %) Bl P i B e, SRU31) AL it
M 568 B 119 DB PR R G TR 22 . A CONIN S KA IS
PURRERAE BEERE A1, AT LA - PG H R0 HE ok 2

Kt PR AL RAE . CNIN RSB ] e 11 30 91 IR %
W5 R | K ARk B 2 SR G ) R A
FOFNSCRE , — FUR A 1] s e X 9o I 5 38
B DI, 0T A PR T 5 P A R S LA

IR 2 2T AR N TV A BT R 5 5 1Y)
S R R A 5 R KR MR TR, A5 ) S5 5 an
K9 BN AiE—25 T R R R UM 25 3R, LR
B 7,

WA ] 9a REF Y CNN AR 7R AE - 57 AR 5 1 U5
RIS, R R 95% . BIRIRERS F Bk
B 4 oA G ) SRR RAIE, 91 an 3 B 6 . SCRELA
ks )sE, SIERH T HAE A B A R T 55 s i sk vk

253 Hr & 9b AT LUK CNN A58t 7] D)4
D R R0 I R AR, MERR SR 90% . WA TR Y
REALG, R = 2 1 A 232 T BB S AR A B ik 1, ik S A
IRV BRI RSN . FE— LT, R
Al RS AR AL B VK i A 4544 . CNIN B 7R3 2o 2 >
I Ik S AR, A7 R0 b TR0 ek B AR A P 2

M 9c AT LLAE Y, CNN R RN 25 7K 3 1 0 1) e
TR2IN 83%, WAL T T BT AR AL o X AT e i TR
AR E R A AAE BUR B T, R R AR S
TR o IVK B AR AR, X Fh AR AL AR5 b X DA
THIBE P, A, CNN B AR R SR 55
U o BT HERR TN 3 AR, BE T R R R
T AT SR
3.3 HEGSEXTER TN R RN 4 AT

FESEBR RS TRt Ty, R S B 2 5
AFIFE R R, 5% NI R A B 25
VAL IR A 5 22 5 N s I T A5, 5 pe A
LAY TP 5T o3 A HHABEARY SR04 B ) S

12 E A 1Y MG B AR rh e B — 5K [RR A T AL
Gy st A3, AR OGBSI . BOMISCR L R Rl i+
REFDLEE S it TR Hh mT e 18 2 A1 O, B an Bl 64k
A, B3 T B BUR Sh SO DL R 5k 5 B Ar
FMAT5H. 2t BB A9 YR A0 10 iR .

FI B ST G 0 TR 52 2 2 55 R0 1000 28 5 A4
A B S  EMSBR I rbr i 22 . PR R LR R 2R
SR 2.6~2.7 MPa, i KR Lt 52 B | X EL B RIS
(TR 25 5 Ky 2.7~2.9 MPa, Zst 5l A5 #1385 43 186
PYJE R TIISE SR 2.6~2.7 MPa, Z3Hr ] LIE e
JE R AR AT LR B A B L, A5 780 K i HE A 00,
5 RS R AR AR . 3 0] R Ol G S B A
Xof L B AR A0 T R T BOCSRRAE (v i 43 A 5 5448 )
(AT DL AR, 52 M BT (R R R AR SR IRE ) o AR Sh A
KRR AR A I G0 T, AL RS IE B T2 . 31X



%5 WIE 4. T SRR IR (1 12 R e )y 12 2769
2.4
100 [
sol — R Bk |
é’
¥ 60 12 ¥
g =
= 40t
0.6
Y \\/\fWW\____
10
0 1 1 1 1 1 1
0 10 20 30 40 50
Epochs
(a) T
124 124
100 | — R —— ik 100 - — e —— ik
80 | 118 80 |- 118
%‘607 {12 XK B 60 - 112 %K
& B8 P
= a0} = a0t
10.6 10.6
20 20
10 10
0 1 1 1 1 1 1 O 1 1 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
(b) it (o) HARFE

Ko R AR I ZREE R

Fig.9 Training results for permafrost feature extraction
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Image data under simulated scene processing
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Fig.11 Comparison of different categories of heat fusion maps
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