
 

基于图像数据驱动的冻土强度智能识别方法
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摘　要：在冻结法施工中，保证冻结壁稳定性至关重要，传统的现场检测方法因其间断性而无法提

供实时监测，限制了对冻结壁潜在灾变的及时响应，采用冻土的深层原位精准探测是揭示冻结壁

重大工程灾变机理及灾害预警的有效手段。基于卷积神经网络提出一种基于图像数据驱动的冻土

强度智能识别方法，通过对 93 组试样的多角度图像捕获及随后的单轴抗压强度试验，标注试样图

像与实际强度数据并结合图像数据增强技术，构建了深度学习模型训练所需的图像数据集；利用

迁移学习深度残差网络 34 层 (ResNet-34) 模型，并对比其他不同模型的训练过程和测试结果，发

现 ResNet-34 模型效果最佳，准确率为 92.8%，且没有出现过拟合现象；应用深度学习模型对冻土

强度的影响因素土质、温度和含水率进行识别，发现模型能有效识别出 3 个变量，证明了模型识

别冻土强度的科学性和可靠性；此外研究了模型在不同干扰条件下的表现，模拟典型干扰场景并

分析其对模型预测性能的影响，为后续改进数据增强策略和模型优化方向提供依据；引入 Grad-
CAM(Gradient-weighted Class Activation Mapping) 可解释性分析方法揭示卷积神经网络在冻土强度

识别任务中的内部特征提取过程，发现利用模型能够提取和分析冻土的关键图像特征，实现冻土

强度的快速判识。研究成果为冻结壁状态的实时监控及早期灾害预警提供了新方法，可为冻结工

程安全施工提供技术支撑。
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Image data-driven intelligent recognition of permafrost strength and
feature visualization based analysis
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Abstract: Ensuring the stability of the frozen wall is critical in freezing construction, but traditional onsite detection meth-
ods, due to their intermittent nature, fail to provide real-time monitoring, limiting timely responses to potential catastroph-
ic events. Deep in-situ precise detection of frozen soil is an effective means to reveal the mechanisms of major engineer-
ing disasters in frozen walls and to provide disaster early warning. A convolutional neural network-based image data-driv-
en intelligent recognition method for frozen soil strength is proposed. This method involves capturing multi-angle images
of 93 sample specimens and conducting subsequent uniaxial  compressive strength tests.  The labeled sample images and
actual strength  data,  combined  with  image  data  augmentation  techniques,  were  used  to  construct  the  image  dataset   re-
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quired for training the deep learning model. A 34-layer deep residual network (ResNet-34) model using transfer learning
was employed. By comparing the training processes and test results of different models, it was found that the ResNet-34
model performed the best, achieving an accuracy of 92.8% with no signs of overfitting. The deep learning model was ap-
plied to identify the influencing factors of frozen soil strength, including soil type, temperature, and moisture content.  It
was found that the model effectively recognized these three variables, demonstrating the scientific validity and reliability
of the model in identifying frozen soil  strength. In addition, the model’s performance under different disturbance condi-
tions was studied by simulating typical  interference scenarios  and analyzing their  impact  on the model’s predictive per-
formance, providing a basis for future improvements in data augmentation strategies and model optimization. Grad-CAM
(Gradient-weighted Class Activation Mapping) interpretability analysis method was introduced to reveal the internal fea-
ture extraction process of the convolutional neural network in the frozen soil strength recognition task. It was found that
the model could extract and analyze key image features of frozen soil,  enabling rapid strength assessment.  The research
results provide a new approach for real-time monitoring of the frozen wall state and early disaster warning, offering tech-
nical support for the safe construction of freezing projects.
Key words: frozen soil；Uniaxial Compressive Strength (UCS)；image recognition；transfer learning；model explainab-
ility analysis
  

0　引　　言

人工冻结法是一种在岩土工程中得到广泛应用

的施工技术，尤其在面临传统施工方法困难的地方，

如难以支护的地下工程、矿山工程以及隧道工程等[1]。

这种方法的应用可以有效地建立坚实与稳定的冻结

壁，能避免地下水的涌入并且在城市挖掘作业过程中

有效控制邻近土层的变形。强度参数是评估冻结壁

稳定性的最重要指标[2]。只有及时准确获得这些参数，

才能确保建设工程的安全性。

目前冻结壁在形成和维护期间的强度监测主要

依赖传统的监测技术，如温度场监测[3]。但单一的温

度监测难以全面反映冻结壁强度的变化，特别是在复

杂的冻结地层中，温度变化与强度变化并非实时对应，

且冻土由于其起源和形成过程的不同，本质上是各向

异性和非均质的[4]。这种高度的多样性使得研究和预

测行为变得困难。随着人工智能的发展和应用，其在

岩土研究和工程实践中的应用也备受关注[5]。人工智

能算法具备自适应性、非线性建模能力以及高精度预

测能力，能够弥补传统方法在处理复杂非线性问题中

的局限性。

人工智能技术可以通过处理和分析大量的试验

数据来发现其中隐藏的规律和模式，并依此建立模型

预测冻土的力学性质。JALAL 等[6]利用人工神经网

络和基因表达式编程等方法建立了预测膨胀土压力

和单轴抗压强度的模型，并验证了其可靠性。SOLEI-
MANI 等[7]基于多基因遗传规划提出的模型能有效预

测黏土的无侧限抗压强度，证实了其对多种参数的适

应性。REN等 [8]引入了基于鲸鱼优化算法的 El-

man神经网络预测模型，有效地处理了超低温冻土抗

压强度与影响因素之间的复杂非线性关系。LI
等[9]、PHAM 等[10]、WEI等[11]也同样实现了人工智能

技术与冻土力学性质的结合。训练完成后的人工神

经网络的实时性通常受到输入数据获取方式的限制。

大多数机器学习模型仍依赖于温度、含水率等外部测

试数据作为输入参数，而这些参数的获取通常需要借

助专门设备进行现场测量或实验室测试[12]。这种对

外部参数的依赖性对于许多需要快速响应的应用场

景，其效果可能会受到限制。

相比传统机器学习方法，基于深度学习的图像识

别技术具有更优越的实时预测能力[13]。一旦训练和

部署完成，深度学习模型能够自动从输入图像中提取

特征，并进行实时预测，提高了预测的准确性和效率，

且无需依赖人工特征选择。HE等[14]提出了一种结合

图像数据的深度卷积神经网络方法，通过对钻探性能

参数生成的图像进行训练，快速、连续地估计岩石现

场强度参数，预测精度误差在 10% 以内，且优于传统

方法。HAN等[15]提出了一种基于深度卷积网络的光

谱图分析方法，通过地质锤敲击岩石产生的光谱图作

为输入，以 Inception-v3模型为基础，实现了对岩石表

面强度的预测。现有岩土强度参数的获取方法还有

超声波[16]和电阻率[17]等无损监测方法。这些方法在

应用场景中能够提供有效的监测数据，同时超声波和

电阻率测量与强度参数之间的关系通常需要通过间

接推断或模型转换来建立[18]。在此背景下，图像识别

技术为冻土强度监测和冻结壁状态判识提供了一种

新的思路，能够通过分析图像特征参数实现快速、实

时、准确地获取冻土强度信息。
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本研究聚焦于图像数据驱动的冻土强度参数智

能识别。在实验室条件下建立了不同类别的强度图

像数据集，利用迁移学习 ResNet-34深度学习模型

对图像进行识别，对比分析模型在不同迭代次数

(Epochs)下的训练性能，并分析、验证在最佳性能下

模型的准确性和科学性。在此基础上利用视觉可解

释分析方法对训练后的模型的机理进行深入探究，尝

试揭示模型如何从图像中提取特征，并基于这些特征

做出准确的识别决策，为实时判定冻结壁稳定性提供

快速、高效的解决方案。 

1　冻土图像数据集的建立
 

1.1　试验试样的制备

选择泥炭质土、淤泥质黏土、砂质黏土和砂土进

行人工冻土单轴抗压试验。试验方案见表 1。试验过

程中使用的 93组冻土试样如图 1所示。
  

表 1    人工冻土单轴抗压试验方案

Table 1    Uniaxial compressive test program for artificial
frozen soil

组数 土质 温度/℃ 含水率/%

1～21 泥炭质土

−10
22、25、28、31、

34、37、40
−15

−20

22～51 淤泥质黏土

−10
15、17、19、21、23、

25、27、29、31、33
−15

−20

52～72 砂质黏土

−10
15、17、19、21、

23、25、27
−15

−20

73～93 砂土

−10
11、13、15、17、

19、21、23
−15

−20
 

土样因其不同的组成、结构和物理性质，呈现出

各异的冻土特性。试验在−10、−15和−20 ℃ 三种温

度，以及 11%～40% 的含水率下进行，以探究这些因

素对冻土力学性质的影响。在这些条件下，冻土的物

理和力学特性的变化为图像识别模型提供了多样化

的学习样本，帮助模型更准确地识别不同冻结状态下

土样的强度特征，从而提升预测的精度。

试验前将 4种土壤样本置于自然环境下风干。

随后这些样本被转移至预先加热至 105 ℃ 的烤箱中，

以确保其在至少 8 h的时间里彻底干燥，便于测定干

土的质量，并据此计算含水率 (表 1)。为保证土壤样

本的均匀性，土样在搅拌后被密封于塑封袋中，以防

水分散失。采用 3层压缩法人工压实土壤，加工成直

径为 50 mm，高度为 100 mm 的圆柱体试样。制备完

成的试样连同模具一起被密封于塑料薄膜中，并放置

于低温冷冻箱中养护 3～6 h。养护完成后，将试样从

模具中取出。最终将所有试样分别放置于设定温度

的低温冷冻箱中，进行 24 h的恒温养护。该流程旨在

确保土壤样本在后续测试前达到理想的物理状态，从

而保证试验结果的准确性。 

1.2　冻土图像采集方法

本次图像采集使用到的设备为尼康 D7500数码

单镜反光照相机。该设备的有效像素约为 2 088万，

确保了图像质量的高清晰度。在图像采集过程中，每

制作并养护完成一个人工冻土试样时，立即将其置于

摄像机前，使用 LED灯补光，调节光源亮度和镜头焦

距，待图像清晰后迅速拍摄。在采集试样的照片时，

从不同的角度和位置对试样进行抓拍，以尽量覆盖其

表面特征的多样性。这有助于全面捕捉试样的表面

特征及其细节，为后续的分析提供了高质量的图像数

据。在图像采集完成后，立即对试样进行单轴抗压强

度试验。测试得到的峰值强度值将与图像数据进行

标注，如图 2所示。

在−10、−15、−20 ℃ 的温度下，对含水率 11%～

40% 的试样进行单轴压缩试验。本次试验共制备了

93个试样。将试样用保鲜膜密封包裹，并贴上对应测

试信息的标签。采用 WDT-100型冻土试验机对试样

进行单轴压缩试验，应变速率设定为 10−2 min−1，试验

结束条件设置为应力下降 20% 或应变超过 15%。微

机每 15 s自动采集数据并显示相应的应力−应变曲线，

并记录试样的单轴抗压强度。由于篇幅限制，仅展示

出淤泥质黏土 30组试样的应力−应变曲线，如图 3所

示。可以看出淤泥质黏土的整体强度随着温度的降

低而增大。

不同冻土试样抗压强度的数据分布如图 4所示。

根据图 4中不同冻土试样在强度上的差异和各自数

据分布特点的分析可得：泥炭质土的强度变化较大，

但大部分数据集中在 6 MPa；淤泥质黏土和砂质黏土

的强度数据分布有着类似的特点，它们的数据主要聚

集在 3 MPa左右；砂土的强度分布集中在 4 MPa左右。 

1.3　图像数据集的建立与维护

深度学习的图像识别技术是利用深度神经网络，

尤其是卷积神经网络 (CNN)来解析和理解图像内容

的一系列方法和技术。而图像分类是其最基础、广泛、

成熟的应用之一。为了充分利用深度学习在分类任

务上的优势，以进行人工冻土单轴抗压强度的识别，
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本研究拟采用基于 CNN的方法，依据其单轴抗压强

度 (UCS)将人工冻土样本归入不同的类别中。尽管

理论上可以通过定义无限多的类别来模拟 UCS的连

续值分布，但由于深度学习中的多类分类问题实际上

 

(a) 泥炭质土

(b) 砂质黏土

(c) 淤泥质黏土

(d) 砂土

图 1    试验 93组试样

Fig.1    Test 93 groups of specimens
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基于有限类别，故将 UCS的连续值划分为若干离散

区间，每个区间对应一个类别，从而将连续数据转化

为分类问题进行处理。由于实际试验中的样本分布

不均衡，考虑对强度范围进行了非等宽划分，以更好

地反映数据的实际分布。这种划分方式使模型在训

练过程中能获得更具代表性的样本，避免数据不平衡

影响模型性能。在中等抗压强度区间采用较小的区

间范围 (如 2.6～2.7 MPa)，以提高精度；而在抗压强度

变化较大区间，适当扩大范围 (如 0.5 MPa)，以保证样

本的充分性和模型的稳定性。

为了尽可能保证数据集分类的精度和样本的均

衡性，考虑舍去过大和过小的抗压强度，得到强度的

不同范围及其标签和分类见表 2。
  

表 2    数据集的不同类别

Table 2    Different categories of the dataset

类别标签
抗压强度/

MPa

试样

样本数
类别标签

抗压强度/

MPa

试样

样本数

1 1.7～2.0 7 7 2.9～3.4 5

2 2.0～2.1 6 8 3.4～3.8 6

3 2.1～2.3 5 9 3.8～4.1 8

4 2.3～2.6 8 10 4.1～4.6 8

5 2.6～2.7 5 11 4.6～5.0 5

6 2.7～2.9 9 12 5.0～5.4 5
 

根据表 2得到的数据集类别，将采集到的人工冻

土图像整理归档，分别放入 12个子文件夹中进行标

注。为避免某些类别图像数量不足影响模型的分类

能力，通过对每个子文件夹中的图片进行旋转、裁剪

和缩放等数据增强处理，将每个类别的图像数量扩展

至 200张，最终得到总共 2 400张的图像数据集。再

利用 Python程序将数据集中的图像随机划分为训练

集和测试集。数据集的划分采取了 80% 的样本用于

训练，20% 的样本用于测试。该划分比例能确保模型

在训练过程中充分学习，同时保留足够的数据用于验

证模型的泛化能力。具体为训练集包含约 1 920张图

像，而测试集则包含约 480张图像。 

2　基于卷积神经网络的模型搭建

在近年来，以卷积神经网络 (CNN)为代表的深度

学习技术和计算能力的显著进步，已经极大地促进了

自动特征提取技术的发展。这种进步提供了一种更

为高效且有效的方式来处理和分析图像数据[19]。 

2.1　卷积神经网络

经典的 CNN模型首先在输入层接收冻土图像数

据，通常是由像素值组成的矩阵。通过应用一系列滤

波器 (也称为卷积核)对输入图像进行卷积操作，提取

图像的特征。每个滤波器会检测图像中的特定模式

或特征，例如颗粒大小、纹理和冰晶等。对卷积层的

输出进行非线性变换，以引入非线性特性。再进入池

 

1.76 MPa 2.00 MPa 2.19 MPa 2.33 MPa 2.68 MPa 2.78 MPa 3.24 MPa

图 2    部分图像数据及其峰值强度标注

Fig.2    Partial image data and its peak intensity labeling
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图 4    不同冻土试样抗压强度的数据分布

Fig.4    Data distribution of compressive strength
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化层，减少特征图的空间维度，降低计算复杂度，同时

提取出特征的主要信息。接着来到全连接层，将经过

卷积和池化的冻土特征图展平为一维向量，并通过全

连接层将其与输出层连接，进行分类任务。最后输出

网络对输入图像的预测结果，通常使用 softmax函数

进行分类问题中的概率分布预测。通过不断优化参

数和结构，CNN能够有效地从冻土的图像数据中提取

特征，并在识别强度任务中取得优异的性能。本研究

使用的卷积神经网络结构为 ResNet-34网络，其特征

提取结构和工作流程如图 5所示。
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图 5    ResNet-34网络结构

Fig.5    Structure of ResNet-34 network
 
 

2.2　迁移学习神经网络

在图像分类任务中，卷积神经网络模型已经证明

了其卓越的性能，尤其是在 ImageNet这一大规模图

像数据集上的应用，其中 CNN模型通过大量训练，成

功学习了对图像分类至关重要的广泛特征。鉴于此，

迁移学习的策略提供了一种高效的方法，允许研究者

利用已经在 ImageNet数据集上预训练的经典 CNN
模型的丰富先验知识[20]。通过精细地调整预训练模

型的特定层次结构和参数，可以对模型进行优化和微

调，从而适应于特定的应用场景，如人工冻土单轴抗

压强度的智能识别。

如图 6所示，预训练模型在原始任务上已经学会

部分特征如冰晶、土的颜色和颗粒大小。通过迁移学

习方法可以使深度学习模型更快地收敛。这种方法

不仅显著降低了从零开始训练模型所需的数据量和

计算资源，同时也提高了模型在特定任务上的性能和

泛化能力。 

2.3　改进 ResNet-34 结构

深度残差网络 (ResNet)是微软研究院的 HE
等 [21]在 2015年提出的深度学习模型，它在 ImageN-
et竞赛中取得了优异的成绩。ResNet通过引入“残差

连接”解决了深层网络训练难的问题。ResNet系列包

括不同深度的模型，其中 ResNet-34找到了卓越性能

和低复杂性之间的理想平衡，使其成为许多图像分类

任务中的首选模型。

原始的 ResNet-34网络 softmax层的分类个数为

1 000，网络最后通过一个全连接层增加网络分类性能，

结构为[512,1 000]。最后的全连接层输入来自前一层
 

预训练任务 目标任务

冰晶

颗粒大小

颜色

纹理

学习特征

迁移学习

图 6    迁移学习示意

Fig.6    Schematic diagram of transfer learning
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的池化层，共有 512个神经元，因此全连接层训练需

要 51 300个参数。对于冻土强度分类任务，分类类别

数为 12，原始 ResNet-34网络的全连接层参数过多，

并不能提高模型的准确率。因此，本文对 ResNet-34
网络的全连接层进行了改进。将原始结构改进为

[512,12]，改进后的全连接层参数只有 6 156个，更适

用人工冻土强度识别任务。在配制模型的超参数时，

Batch Size是指每次输入模型进行训练的数据样本数

量，取为 64，优化函数选取 Adam优化器，损失函数选

择交叉熵损失函数[22]。对于深度学习来说，计算机配

置和开发环境都是极为重要的。本文模型搭建的计

算机配置和开发环境见表 3。
 
 

表 3    模型搭建的开发环境

Table 3    Development environment for model building

软/硬件 型号与版本

操作系统 Windows 1 064位

处理器 AMD Ryzen 75800H

内存 16 GB

显卡 Nvidia GeForce RTX 3060

编程语言 Python 3.10.9

深度学习框架 PyTorch 2.0.1
  

3　智能模式识别及验证

基于已搭建完成的深度学习模型，对冻土的强度

进行智能识别，并对识别结果进行深入分析，对冻土

的特征识别进行验证。 

3.1　冻土强度识别结果

在初始试验中，通过试验验证多种批量大小

Batch Size(如 32、64、128)，确认 Batch Size为 64时模

型的训练速度和性能表现最佳。表 4为不同 Batch
Size 对模型准确率和平均训练时长的影响。
 
 

表 4    不同批量大小下测试集的分类结果评价

Table 4    Evaluation of classification results of test set under
different Batch Size

批量大小 准确率/% 迭代1次的平均训练时长/s

32 87.9 36.23

64 92.8 45.07

128 90.3 51.33
 

在深度学习中，Epochs为模型完整遍历整个数据

集的次数。通常情况下，随着 Epochs的数量增加，模

型的性能会逐渐提升，直到收敛到最优解。选择不同

的 Epochs进行训练，找到使模型在测试集上表现最

好的 Epochs数量，这有助于避免过拟合或欠拟合。

依据图 7不同 Epochs下的训练曲线可知，当

Epochs为 50和 100时，损失函数还未收敛，且呈现继

续下降的趋势，模型未达到最佳性能。在 Epochs达
到 150和 200时，损失逐渐收敛，且达到了最佳性能。

但通过测试集的准确率对比，Epochs为 150时的准确

率更高。随着训练轮次的增加，模型可能会记住训练

数据中的噪声和特定样本的特征，而不是学习到普遍

的模式和规律。由表 5可知，Epochs为 150时，其测

试集的 3个分类指标都是最高的。所以选择保存

150个 Epochs的 ResNet-34模型权重文件，以便后续

深入研究。
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图 7    模型训练集在不同 Epochs下的训练结果

Fig.7    Training results of model training set under

different Epochs
 
 
 

表 5    不同 Epochs 下测试集的分类结果评价

Table 5    Evaluation of classification results of test sets under
different Epochs

Epochs 准确率/% 召回率/% F1

50 71.0 69.6 0.692

100 82.5 82.5 0.825

150 92.8 92.5 0.926

200 89.0 88.3 0.882

　　注：F1为精确率和召回率的调和平均数。

 

为了验证所选模型的有效性，对比 ResNet-18和

ResNet-50网络。在相同的数据集和训练配置下，分

别对 ResNet-18、ResNet-34和 ResNet-50进行训练，

以确保比较的公平性。所有模型的超参数设置一致，

包括学习率、批次大小和训练轮数。为了进一步验证

深度网络相较于传统卷积神经网络的优势，引入

AlexNet模型进行对比。通过与 AlexNet的性能比较，

可以更清晰地展示深度残差网络在冻土强度识别中

的潜力和优势。得到不同模型的性能指标见表 6，结
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果显示 ResNet-34在 3个分类指标的效果依然是最

好的。
  

表 6    不同模型测试集的分类结果评价

Table 6    Evaluation of classification results for different
model test sets

迁移网络模型 准确率/% 召回率/% F1

AlexNet 46.67 46.7 0.459

ResNet-18 91.04 91.0 0.910

ResNet-34 92.80 92.5 0.926

ResNet-50 86.25 86.3 0.862
 

图 8展示的混淆矩阵是 150个 Epochs的 ResNet-
34模型在测试集的性能表现。混淆矩阵是一个非常

有用的工具，用于衡量分类模型的准确性，其中每一

行代表真实的类别，每一列代表模型预测的类别。在

这个特定的矩阵中，沿对角线的数字表示模型预测正

确的数据点数量，非对角线上的数字表示预测错误的

数据点数量。矩阵的颜色深浅代表数量的多少，颜色

越深表示数量越多。
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图 8    真实值与预测值之间的混淆矩阵

Fig.8    Confusion matrix between true and predicted values
 

根据混淆矩阵结果，测试集包含 480张冻土强度

图片，其中 444张被正确识别。深度学习模型在 2.6～
2.7 MPa类别的预测效果最佳，正确识别 39张图片，

唯一的误分类发生在相邻类别 2.3～2.6 MPa。3.8～
4.1 MPa类别的预测效果最差，正确识别了 31张图片。

大多数数据点集中在对角线上，表明模型在多数情况

下能够准确预测类别。 

3.2　冻土强度特征识别的验证

研究人工冻土的单轴抗压强度时，识别和理解影

响强度的关键因素至关重要。利用 CNN强大的图像

识别和特征提取能力，可以从冻土图像中识别出这些

关键因素的视觉特征。CNN模型可被训练识别图像

中与土质粒度、含水量变化及温度差异相关的特定模

式和纹理。一旦模型识别出这些模式并将其与试验

数据关联，就可为预测冻土抗压强度提供坚实基础。

利用深度学习模型对人工冻土单轴抗压强度的

影响因素土质、温度和含水率进行识别，得到结果如

图 9所示。为进一步清晰展示特征识别结果，汇总情

况见表 7。
依据图 9a能看出 CNN模型在土质变量的识别

上表现优异，准确率普遍超过 95%。模型能够自动提

取与土质相关的关键特征，例如土壤的颜色、纹理以及

颗粒尺寸，证明了其在处理土质识别任务时的高效性。

进一步分析图 9b可以判断 CNN模型也可以较

好地识别出温度变量，准确率接近 90%。随着温度的

降低，冻土表面的颜色可能会变得更加淡白，这是因

为水分结冰导致冰晶的反射增加。在一些情况下，表面

可能会出现霜花或冰晶的结构。CNN模型通过学习

和提取这些图像特征，有效地识别温度变化的影响。

从图 9c可以看出，CNN模型对含水率的识别准

确率约为 83%，略低于土质和温度。这可能是由于冻

土含水率的变化在图像中较为微妙，特别是在冻结过

程中水分以冰的形式存在时，这种变化在视觉上难以

清晰呈现。尽管如此，CNN模型整体识别效果依然较

好。通过准确识别这 3个变量，验证了冻土强度识别

方法的可靠性。 

3.3　扰动场景对模型预测性能的影响分析

在实际冻结工程施工中，获取的图像数据常受到

不同环境因素的影响，与室内试验条件存在显著差异。

为评估模型在复杂场景下的适用性和可行性，考虑模

拟典型干扰场景并分析其对模型预测性能的影响。

在已有的图像数据集中选取一张图像进行模拟

场景处理，包括低光照模拟、模糊效果以及局部遮挡。

模拟现实施工环境中可能遇到的情况，例如现场光线

不足，设备移动导致的图像动态模糊以及镜头或目标

表面的污渍。经过模拟处理后的图像如图 10所示。

利用前文训练好的深度学习模型预测经过模拟

处理后的图像数据并分析误差。选择的原始图像类

别为 2.6～2.7 MPa，而图像经过亮度、对比度降低后

的预测结果为 2.7～2.9 MPa，经过动态模糊和部分遮

挡后的预测结果为 2.6～2.7 MPa。分析可以看出在亮

度降低和对比度降低的情况下，模型未能准确预测，

与真实结果为相邻类别。这可能是因为图像亮度和

对比度变化可能导致关键特征 (如冰晶分布或裂缝)
的可见性降低，影响模型的特征提取能力。在动态模

糊和部分遮挡的情况下，模型能够正确预测类别。这
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可能是因为动态模糊和部分遮挡未显著破坏关键特

征区域，使得模型仍能提取有用特征。还有一种情况

是训练数据可能包含类似模糊或遮挡特征的样本，增

强了模型的鲁棒性。

通过研究模型在不同干扰条件下的表现，为后续

改进数据增强策略和模型优化方向提供依据。在未

来的研究将采集实际冻结壁施工环境数据，以评估模

型在不同条件下的预测性能，并通过扩展数据集多样

性和融合多模态数据 (如超声波、电阻率)来增强模型

的泛化能力和预测精度。 

4　深度学习模型解释性分析

鉴于深度卷积神经网络在特征提取过程中呈现

出的高度抽象性，其内部逻辑和决策过程在语义层面

上常常难以直接理解，这导致了深度卷积神经网络在

很大程度上被开发者和研究人员视为“黑盒子”模

型[23]。ZHOU等[24]提出了类激活映射 (Class Activa-
tion Mapping，CAM)技术。该技术能够生成类似于热

力图的可视化结果，揭示了模型在进行决策时对图

像哪些部分给予了更多的关注。但其受限于特定
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图 9    冻土特征提取的训练结果

Fig.9    Training results for permafrost feature extraction
 

表 7    不同影响因素的特征识别结果

Table 7    Results of feature identification for different
influencing factors

影响变量 关键特征 准确率/%

土质 颜色、纹理以及颗粒尺寸 99.7

温度 冰晶形态和分布 89.3

含水率 颜色、纹理及冰晶形态和分布 82.6

 

原始图像 亮度降低 对比度降低 动态模糊 部分遮挡

图 10    模拟场景处理下的图像数据

Fig.10    Image data under simulated scene processing
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模型结构且可能丢失细节，SELVARAJU等[25]进一步

发展了 Grad-CAM(Gradient-weighted Class Activation
Mapping) 方法。该技术利用梯度信息加权特征图，适

用于更多 CNN架构并在保留更多细节方面提供了更

精确的模型解释。

为了探究深度学习模型识别试样的原理与逻辑，

采用 Grad-CAM方法对冻土强度的识别进行分析，得

到关键区域的热力图，并将热力图进行重新采样与原

图融合的方式进行展示。冻土具有独特的物理和化

学特性，这些特性在图像中表现为特定的纹理、颜色

和冰晶分布。

Grad-CAM方法可以帮助识别深度学习模型依赖

于哪些特定的图像特征来识别冻土的不同属性。例

如，模型可能依赖于特定的纹理来区分冻土的不同类

型或识别冻土的强度等级。其中热力图采用的是热

成像图，颜色会随着能量的升高而变红，随着能量的

减少而变蓝，红色越深表示模型对该部分越关注，对

识别结果的影响越大，蓝色越深则相反。

由前文得到 2.6～2.7、2.0～2.1、3.8～4.1 MPa三

个类别的预测准确率依次降低。图 11显示，模型关

注区域较大的图像，其对应的强度识别准确率更高。

这可能是因为在“2.6～2.7 MPa”类别中，模型的关注

区域更大，能够提取更多有效特征，从而实现最高的

识别精度。关注区域较大意味着模型能够从图像中

捕捉到更多的特征信息，这些信息可能包括强度相关

的关键视觉特征，如裂缝、颗粒结构、孔隙分布等。当

模型能够基于更多的信息进行推断时，预测的准确性

自然会提高。

土质决定了冻土的基本结构和性质，是影响其强

度的关键因素。以土质为例，模型分析结果如图 12
所示，可以看出砂质黏土的模型关注区域面积占比最

大为 61.22%，砂土次之为 57.14%，淤泥质黏土的关注

区域占比为 51.02%，泥炭质土的关注区域最小。土壤

类型主要通过其纹理和颜色来区分。砂质黏土通常

含有较大颗粒和明显的纹理特征，便于模型识别和锁

定。砂土因颗粒较大，可能产生更多影像特征，如明

显的颗粒边界，模型更易识别。淤泥质黏土和泥炭质

土颗粒细小，纹理较为均匀，难以被模型区分，因此关

注区域较小。不同土质的强度各异，模型通过识别土

质可更准确锁定土样强度范围，从而实现冻土强度的

精确识别。 

5　结　　论

1)通过对比不同深度学习模型在强度图像数据

集的识别效果，发现 ResNet-34模型识别效果最好，准

确率为 92.8%，说明卷积神经网络能够较好地识别人

工冻土的强度。

2)利用深度学习模型对人工冻土强度的影响因

素土质、含水率和温度进行识别，验证模型在提取和

识别这些特征方面的能力，发现深度学习模型都能很

 

类别: 2.6~2.7 MPa

模型关注区域面积占比: 51.02%

图像像素强度的平均值: 0.505

类别: 3.8~4.1 MPa

模型关注区域面积占比: 24.49%

图像像素强度的平均值: 0.394

类别: 2.0~2.1 MPa

模型关注区域面积占比: 44.90%

图像像素强度的平均值: 0.486

图 11    不同类别热力融合对比

Fig.11    Comparison of different categories of heat fusion maps
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好地识别这 3个影响因素。

3)模拟典型干扰场景并分析其对模型预测性能

的影响，发现模型在这些场景下的鲁棒性较好。通过

视觉可解释性分析对训练后的模型的机理进行了探

究。引入 Grad-CAM方法进行分析，结果表明模型关

注区域越大的类别能够提取的有效特征越多，该类别

准确率越高。
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