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Abstract: Improving the permeability of coal seam is a common method to improve the efficient extraction of coal seam
gas. Using liquid CO, as fracturing medium to freeze-thaw coal is one of the methods to improve the permeability of coal
seam. Liquid CO, changes the permeability of coal seam by causing deformation damage to coal body. In-depth study of
the deformation damage characteristics of liquid CO, freeze-thaw coal body is the basis for revealing the mechanism of li-
quid CO, fracturing and permeability enhancement coal body to strengthen gas extraction. Based on the self-developed ex-
perimental system of liquid CO, freeze-thaw coal body, the experiment of deformation and damage characteristics of coal
body under liquid CO, freeze-thaw conditions was carried out by means of physical experiment. The surface temperature,
stress, strain and tank pressure parameters of coal body during freeze-thaw process were monitored. The influence of li-
quid CO, freeze-thaw on stress and strain of coal body and the phase characteristics of CO, in tank were analyzed. The
contribution of thermal stress, water-ice phase change frost heave force and vaporization expansion force to deformation
and damage of coal body during liquid CO, freeze-thaw process was explored, and the mechanism of deformation and
damage of coal body caused by triple composite stress of liquid CO, freeze-thaw was revealed. The results show that: The
volume strain of liquid CO, freeze-thaw coal shows a ‘U’ -shaped trend of decreasing first and then increasing. The coal
matrix shrinkage deformation occurs in the low temperature freezing stage, and the shrinkage deformation of the coal mat-
rix gradually recovers in the melting stage, and finally an irreversible deformation is formed. The overall performance is
two stages of coal matrix shrinkage deformation and strain recovery. During the experiment, the phase state of CO, shows
a trend of gas-liquid ( gas-liquid coexistence ) -gas state. The freezing and thawing process of liquid CO, includes four
stages: liquid entry, freezing, slow pressure relief and room temperature thawing. The corresponding deformation charac-
teristics of coal body are freeze-shrinkage deformation, freeze-shrinkage + frost heave + adsorption expansion deforma-
tion, deformation recovery and thermal expansion deformation. The absolute values of the minimum strain values of un-
sealed dry coal, sealed dry coal and unsealed saturated coal are 10 056.636x10 °,11 480.186x10° and 7 881.893x10®, re-
spectively. The residual strains are 270.191x107°, 154.869x10® and 2 033.636x10°°, respectively. The expansion and con-
traction rates are 2.686 %, 1.349 % and 25.801 %, respectively. The total deformation damage caused by the combined
stress of liquid CO, freeze-thaw is 2 033.636% 10°°. The deformation damage caused by thermal stress, vaporization expan-
sion force and water-ice phase change frost heaving force is 154.869x10™°, 115.322x10° and 1763.445x10°°, respect-
ively, accounting for 7.615 %, 5.671 % and 86.714 % of the total deformation damage, respectively. The water-ice phase
change frost heaving force dominates. With the increase of water content of coal samples, the absolute value of the minim-
um strain value of coal decreases, the residual strain increases, and the proportion of water ice phase change frost heaving
force increases. The research results clarify the deformation and damage mechanism of liquid CO, freeze-thaw coal from
the perspective of coal deformation and enrich the technical system of liquid CO, cracking and anti-reflection coal en-

hanced gas extraction.
Key words: coal bed methane; liquid CO, freeze-thaw; deformation damage; phase transition of CO,; combined stress
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Fig.1 Experimental coal sample collection
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Table 1 Ultrasonic wave velocity of coal samples

PREGRS RO D OEY (km - ) PR IEGE (km - s

NP-1 1.563 2.193
NP-2 1.498 2.239
NP-3 1.486 2.146
NP-9 1.514 2.229
NP-10 1.489 2.207

R2 BEETLSH

Table 2 Industrial analysis parameters of coal samples

Mol% Aug/% Vaal % FCy/%

2.14 26.06 29.63 42.17
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Fig.2 Liquid CO, freeze-thaw coal sample experimental system

T I —80~150 °C, SR =4kl 1/4 it 14 4%
%, BRI 2V, 2 KRR B 1) 5 e o )
7 ) A Wi — AN AR i, e s B — A ST 9 £ 50
A A g i L AT T, LR A SR ] = 2 1/4
B A% % 0 K, TRE ANEE S KA 2 10 mmx
10 mmx0.5 mm J5fE 415 F, I BT R Rl e P
ANZALATIN TR, WA 3 P

PREEHE

wgﬁ,/////gﬁﬁ\\\\\\@?%%ﬁ
CCBABKR
| Yoz | |
e

K3 R R

Fig.3 Setting of temperature compensation

4) - I ARG, B il B AR L TR



552 4]

RIS S CO, VR AR TR AT R 5T 1007

FTIEIEER . TCARIC A EHLALR, 15 AL g i
T =200~ 1300°C, #35K BE K 20 cm, 5 R
JRRE B, LI R 0~10 MPa, i {5
5R 4~20 mA, AL AR ) AR IR SR
SRR | AR )22 4k, LFIWT CO, AHAS .
1.3 XBRGZFEHMERN

WA CO, PRl AT S0 25 L Al S M ) SC Sl E T
FEVRN CO, AR RFE I, WEMR ) — BR AR Tl A
FEIT e85 Tk, nl UL, SEARS MR CO, AHAS
FISCHEER R, N T PRIESE IR R G0 U% 1, Uk il T 55
IR AR (5] 2R FH VU 3 2 M 1 T 1~ 4 P 23 5 o A i
PR R IR E M N B, e S e e )5, R He
DUSRE AR 0 M, WER R ) AR R 4 o, s 45 1e
T GRBE R 30 OV KT, LRREWRIE TN
5.962 MPa, 16 h J&, ZG SRR T10 5.960 MPa, 3¢ &
AU A, TR SRR

599

598 -

40 000 60 000
i IE]/s

Bl 4 REbREAN RS2 1k
Fig.4 Pressure change in freeze-thaw tank
14 SEXREE

I R AR B PRI N PR B IR T 5 UERTR S CO,
VR Rl RO B S W), S 6 300 ] 28 P R P 2 9 4 o iR 82
TE 26 °C Ze A7, % S 56l 5 R K (1003~
100.6 kPa), S BRUNT

1) EEH S ZR L, 3 T S B A S H )y ) b e
LBy 1] 25 W — AR A8 e, I A R Y
SR BORBEAMEN AR 7 WA B S S i E T
VRALHEN, i AR Z AT 41 1 5%

2) K I ES I R R G AL A , 2RV Rl
G, Ridy RGN, S RGEHE IR, T VRl
PRI

3) G IFIHIAS CO, FE FLHETTR AU, 218
WERGE S1FaE 2 1.2 MPa, 4% 1 min fff CO, S /&
O R REN A ]

0 20 000

4) IR WA CO, At FLHETVE W I, PRI
JITE 2.3~2.5 MPa Z N, i CO, L2181 A VRRLHE,
A CO, RVMERE, ST 215G 72 50 ) e 16 5 4 FL7E
R

5) URE5 ISl 30 min, VRES4E G 218 G &
SR I LR CO, SMRAY, R T B 1k S B
IE R, BERNSS T, T B IR R R T AR IE
WA CO, VBB LAl e 154 0.001 MPa/s,,

6) FEVRE JIREAR R 0 1, PR EI VR Al RE, F A S
AP (REEAME) BRUCE TEW, 5 2R
Z R G LIEH

7) LA BRI, RS 1) ~6) FFEA
[ THLRAS CO, URRNSZE

K5 s

Fig.5 Flow chart of experiment

2 GRSt

2.1 CO, BEFKHRNE

WA CO, TERGEN AR et | AL BRI G
SR A 18 Jo i o ) 2R I 40 5 R B AT — 2 B 5 e AR
o RIS CO, FrRbid bR R IR | REE
FI S AR A, KR RE H CO, ML AL A1 T
S3HT, WE 6 IR .

I 6 TN, SRS CO, Wl By BE N A IR
& 74T SR, R s R A RS 4 B ]
A TR AR, — &R 431 [ &b T W AR KR AR
FAERIREE, [l T CO, BIAHAS AT E M, VRt 2
H CO, MAHASFHIE SRR Ty WS (K-t
B3, WA CO, B M RBORE . K1 kA
A, IR BE . 7 A O (ol AR AR TR AR A 2 A el R,
R T CO, TRRlE— = 42031 . 7KK
AR S ZH N IR GEH R 2 R
BEAAIISIARAE SRS SJRE | B A8k 1
ASFEARE, ANFAEZSE CO, X REREE B R S350 A
5. AT RAAR CO, MIZSFHE . JE K S48k
XPREREASTERRAE Y 52 i B, R FRE . 15 CO,



1008 # % F #® 2025 445 50 %
1 000

—— [, SIE St A

—H \hi;ﬁllgﬁﬁ ;

—— AR R i s

100 F—— " W : &
i
= s Wk L s
= I A i e
= 10 w7 5L !
.R ............. -
i I N
= AN
L =AH) \\ = Lok
I\ |
/
03 gk i
0.1 ! ! ! =3 — e T PR Il Il ! ! ! L L L L
~80 —60 —40 20 0 20 40 60 80 “20-15-10 =5 0 5 10 15 20 25 30 35
WRE/C RJEPC

Fl 6 FERbEFET CO, MIZSHEBURE

Fig.6 Phase change characteristics of CO, during freeze-thaw process
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Fig.7 Effect of phase characteristics of liquid CO, on deformation characteristics of coal
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