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Dynamic characteristics and damage model of freezing thawing
red sandstone under impact load

YU Yang, JIANG Qincai, WANG Zehua, LU Yuyin, GUO Qixiang, ZENG Huiming

(State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Guarantee,

East China Jiaotong University , Nanchang 330013, China)

Abstract: To study the dynamic mechanical properties and damage evolution characteristics of freeze-thaw rocks under

impact loads, 0, 15, 30, 45, and 60 freeze-thaw cycle tests and dynamic impact tests were conducted on red sandstone in

cold regions.

The effects of strain rate and freeze-thaw damage on the dynamic mechanical properties of red sandstone

were analyzed. Based on the damage evolution equation considering the damage threshold, a damage viscoplastic dynam-

ic constitutive model of freeze-thaw red sandstone was constructed based on the combination element model theory and
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statistical damage theory, and the rationality and applicability of the model were verified. The results show that red sand-
stone exhibits freeze-thaw cycle effects and strain rate effects, and its dynamic peak strength decreases with the increase of
strain rate or the decrease of freeze-thaw cycle times. The higher the strain rate, the stronger the sensitivity to freeze-thaw
damage; the introduction of dynamic peak strength loss y can eliminate the strain rate effect under impact loads and more
intuitively reflect the impact of freeze-thaw cycles on the dynamic peak strength of rocks under different impact loads. The
damage threshold point is 45 freeze-thaw cycles, and after 45 cycles, the freeze-thaw damage tends to stabilize; compared
with unfrozen and thawed environments, a larger scale crack network is formed internally, and the failure mode changes
from splitting to shear failure. The mechanical properties deteriorate significantly in the freeze-thaw environment; the lin-
ear elastic stage of sandstone exhibits obvious behavior after freeze-thaw cycles. Based on the D-P failure criterion, a dam-
age evolution equation considering the damage threshold is derived, which is more reasonable. Based on the Zhu—Wang—
Tang constitutive model, a viscoelastic plastic dynamic constitutive equation for constructing damaged bodies is intro-
duced, reflecting the comprehensiveness of the constitutive model; the dynamic constitutive model established in this art-
icle well reflects the complex characteristics of damage softening, viscoelasticity, and viscoplasticity exhibited by red
sandstone during load deformation, and also reflects the influence of freeze-thaw damage on the dynamic mechanical

properties of red sandstone; the conclusions obtained can provide reference for studying the dynamic impact failure of

rocks in seasonal high-altitude and cold regions.
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Table 1 Physical and mechanical parameters of red

sandstone in each freeze-thaw cycle

R T IO P s
(g+em”) (km-s)  5REE/MPa
A-1 2.62 2.87 38.34
A-2 2.64 2.82 38.56
0 A-3 2.64 2.79 38.78
A-4 2.63 2.83 37.97
A-5 2.63 2.85 38.05
B-1 2.56 2.81 35.67
B-2 2.57 2.77 35.51
15 B-3 2.54 2.76 34.98
B-4 2.57 2.77 36.04
B-5 2.56 2.78 36.01
C-1 2.47 2.72 30.55
C-2 2.46 2.70 31.62
30 C-3 2.50 2.70 30.87
C-4 2.47 2.69 29.96
C-5 2.48 2.66 29.9
D-1 2.40 2.64 27.63
D-2 2.41 2.65 27.78
45 D-3 2.39 2.63 27.54
D-4 2.38 2.61 28.01
D-5 2.40 2.63 27.19
E-1 2.34 2.58 25.82
E-2 2.33 2.55 25.74
60 E-3 2.35 2.57 26.58
E-4 232 2.60 25.63
E-5 2.32 2.55 25.33
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Table 2 Selected strain rates under different freeze-thaw cycles
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Fig.4 Dynamic stress-strain curves of freeze-thaw red sandstone under different strain rates
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Fig.5 Dynamic stress-strain curves of freeze-thaw red sandstone under different freeze-thaw times
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Fig.6 Relationship between peak strength characteristic quantity of red sandstone and number of freeze-thaw cycles
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