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Dynamic calculation of heat-flow coupled mine ventilation network with
introduction of air volume fluctuation factor
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(1. College of Safety Science and Engineering, Liaoning Technical University, Huludao 125100, China;
2.Key Laboratory of Mine Thermal Disasters and Prevention, Ministry of Education, Huludao 125100, China)

Abstract: To address the issue of continuous multi-scale fluctuations in air volume due to the thermal flow within the un-
steady airflow medium in the ventilation system pipe domain, which limits the accuracy of system state mapping when us-
ing a static thermal-pressure-humidity ventilation calculation model. Under the framework that the air flow is a polytropic
process involving coupled aerodynamic and thermodynamic processes, the real-time and accurate mapping of the system
operation state is equivalent to dynamically calculation the heat-flow coupling fluctuation mine ventilation network under
time series. The underlying multiscale fluctuation principles of heat-flow coupled air volume were examined, identifying

airflow density as the primary cause of volume fluctuation. Using this as a characterization variable, with unsteady envir-
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onmental and gradient flow fields as boundary conditions, an infinitesimal approach was used to analyze the time-variant
law of heat-flow coupled property of airflow. A transient airflow feature model was developed with time as the root vari-
able. An air volume fluctuation factor was defined to capture the transient position of fluctuating air volume, which was
then incorporated into a static ventilation network model, yielding a fluctuating ventilation network calculation model with
continuous spatial characteristics. Additionally, a transformation equation linking the fluctuation factor with the transient
airflow feature model was established to integrate the transient flow function as a fluctuation transfer variable in the fluctu-
ating ventilation network model, thereby forming a time-series-based dynamic calculation model for the fluctuating ventil-
ation network to achieve real-time, precise mapping of the network state. To validate the production feasibility of the dy-
namic calculation model for the fluctuating ventilation network, Shuangma I Mine was taken as the engineering case, with
cross-strata thermal environment data in time series applied as the initial condition. This enabled real-time global ventila-
tion network calculation, expanding the fixed initial air volume value into a time-series fluctuation range and accurately re-
flecting the real-time operational characteristics of the production ventilation system under the heat-flow coupled airflow
condition. The dynamic calculation for the fluctuating ventilation network facilitates precise quantitative mapping of the
ventilation network state through real-time analysis of the coupling effect between the mine environment and ventilation
variables, establishing a data foundation and optimized pathway for subsequent intelligent quantitative decision-making to

enhance the adaptive adaptability and intrinsic precision of intelligent ventilation control.
Key words: intelligent ventilation; ventilation network calculation; state reconfiguration; heat-flow coupling; airflow
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Fig.1 Heat-flow characteristics of air flow in an infinitesimal of roadways
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Table 1 Initial static ventilation network calculation

i Jﬂﬁq/ e mﬁq// P )XLqu/ e miq_/ e Jﬂﬁqj/ e Jitiq,-/
s m s m s s s s

ey 170.87 eg7 52.85 €137 2.98 €75 1.71 €30 41.44 €361 39.24
e 187.75 egg 0.70 €j39 2.79 €76 27.98 €321 11.49 €362 7.52
ey 16.88 eg9 3.48 €144 0.57 €77 3.58 €322 5.07 €363 19.46
eg 150.23 [ 12.36 €145 52.29 €378 26.26 €323 0.44 €364 19.79
40) 37.52 eg) 53.80 €146 51.35 €8 38.63 €324 9.75 €365 12.46
[ 104.12 €93 1.75 €147 18.24 €83 0.59 €35 0.75 €369 7.29
€1 46.11 2 52.05 €48 33.11 €84 25.68 €38 1.31 €370 0.29
e 41.95 €ys 23.72 €149 16.64 €8s 1.12 €329 30.05 €371 19.74
€3 62.17 273 28.34 €150 1.59 €286 4.61 €330 48.80 €374 12.99
€9 7.58 egg 7.30 eqs 9.07 €787 19.95 €331 56.32 €375 6.80
e3 49.52 €99 21.04 €5y 3.40 €88 24.54 €33 3.93 e3g5 10.60
e3 48.67 €102 12.96 €154 5.67 €294 15.13 €333 3.64 e3g3 2.39
e 0.86 €103 5.67 €190 332 €95 3233 €334 10.45 €389 23.38
es3 47.60 €104 15.37 €3 8.43 €296 8.83 €335 21.04 €390 22.73
e3s 48.53 €105 7.45 €245 13.06 €297 28.11 €336 0.67 €391 10.20
€36 0.94 ejo7 5.51 €46 15.45 €300 19.98 €337 1.43 €392 12.53
ey 46.95 €108 4.39 €48 127.27 €303 12.98 €338 57.75 €393 2.61
e43 1.59 €109 413 €249 4.14 €305 13.91 €339 60.36 €304 9.91
€45 40.47 e 42.05 €55 5.74 €306 4.59 €341 9.24 €400 1.07
esq 6.47 el 45.23 €)sg 2.44 €307 5.78 €343 3.25 €403 1.07
€75 2.35 e 48.22 €63 3.30 €308 3.53 €346 5.99 €404 6.10
€76 9.87 e 108.58 €265 6.87 €310 2.22 €349 1.37 €405 6.40
e 12.22 €120 111.83 €266 9.31 e3n 4.18 €350 4.62 €406 7.20
ez 15.54 el 2.47 €67 10.90 e 5.92 e3s 7.42 €407 7.00
egq 36.58 €12 21.25 €68 12.46 €313 4.36 €35 8.88 €408 7.00
eg) 37.95 €123 6.94 €69 1.56 €314 12.50 €353 21.93 €409 6.30
eg3 71.13 €128 28.19 €70 13.58 €316 12.04 €354 3.18 €410 9.00
eg4 54.25 €13 36.17 7 28.71 €317 32.48 €356 18.74 €414 76.77
egs 0.70 €133 37.92 €73 36.33 €318 36.02 €359 15.40 €415 165.22
eg6 53.55 €134 5.77 €74 38.05 €319 48.06 €360 46.76
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Table 2 Heat-flow coupling properties of characteristic equivalent branches
b X BER 4 PSR
. o AREIMFREK/ "
Hs B TR i 22/m o JA R T/K
kl-kg -K)
KA 12.09 0.980 291.92
e4s R 4-1T0iH 1.82 0.980 291.98
4- 1R 0.99 0.180 292.01
KA 10.04 0.990 291.47
3-2JiR 1.32 0.990 291.43
er9 [l XU 324 )R 1.55 0.189 291.38
32Tk 1.38 0.990 291.34
AR 13.71 0.990 290.91
€104 FRHE RIS 4152 57.30 0.190 292.20
el AR AR 3 4-1T0UH 9.80 1.000 292.11
€120 101X [l XA 32 4-1TitR 9.00 1.000 292.11
YRELE=: 5.05 0.100 292.05
4-1T5iHR 1.82 0.100 292.11
el FRIE 4- 152 2.99 0.180 292.20
4-1EMR 1.67 0.100 292.25
KA 3.18 0.100 292.35
e 102X R EER8053 32 4-2T5UHT -7.70 1.040 292.65
X KA E 0.15 0.990 292.64
6‘412 IEUXLE#
42T 1.55 0.990 292.65
T SR . BIAERRASR M N Y sl AR S FESL bR A P i R vh, FEARRRS IR S FI R

BRI AR O — 2 Sk TR AE AT WEISEAR, I N 2R o SOXURR A R AR Bl
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Table 3 Global ventilation network calculation results under time series

Wig i/ (m3 -5 )

))(L%qj/(m3 )

73 i
0h 5h 16 h 23 h Oh 5h 16 h 23 h

e 172.00 170.79 175.67 172.80 €74 38.45 38.10 39.48 38.71
e 189.04 187.77 192.95 189.87 €75 1.72 1.73 1.70 1.72
ez 17.04 16.97 17.29 17.07 €76 28.28 28.05 28.97 28.45
eg 151.29 150.22 154.55 152.00 €77 3.61 3.58 3.70 3.63
ey 37.74 37.54 38.40 37.88 €78 26.56 26.32 27.27 26.74
ey 104.92 104.09 107.39 105.47 25 39.04 38.69 40.07 39.30
ey 46.37 46.13 47.16 46.53 €83 0.59 0.59 0.59 0.59
exn 42.43 41.92 43.86 42.717 €84 25.97 25.74 26.68 26.15
2% 62.49 62.18 63.54 62.70 egs 1.13 1.12 1.16 1.14
ey 7.58 7.64 7.50 7.57 €36 4.67 4.62 4.79 4.70
e3 50.01 49.56 51.35 50.34 €87 20.17 19.99 20.73 20.31
e3] 49.15 48.70 50.48 49.48 egs 24.80 24.58 25.47 24.97
e3 0.86 0.85 0.87 0.86 €294 15.30 15.16 15.71 15.40
es3 48.08 47.64 49.39 48.40 €295 32.74 32.39 33.77 33.00
€35 49.02 48.57 50.35 49.35 €596 9.00 8.86 9.41 9.10
es 0.94 0.94 0.96 0.95 €397 28.40 28.16 29.16 28.60
ep 47.42 46.98 48.70 47.73 €300 20.20 20.02 20.74 20.34
e43 1.60 1.59 1.65 1.62 €303 13.20 13.02 13.74 13.34
eys 40.92 40.52 42.09 41.22 €305 14.20 13.96 14.96 14.40
esg 6.50 6.46 6.61 6.51 €306 4.63 4.59 4.74 4.66
e75 236 2.34 2.40 236 e307 6.00 5.82 6.54 6.14
e 9.91 9.86 10.08 9.93 €308 3.57 3.54 3.67 3.60
e 12.27 12.20 12.47 12.30 €310 2.22 2.22 2.22 2.22
erg 15.60 15.52 15.86 15.64 €311 4.18 4.18 4.18 4.18
ego 36.74 36.54 37.35 36.83 e 5.92 5.92 5.92 5.92
eg) 38.11 37.91 38.75 38.20 e33 4.36 4.36 4.36 4.36
eg3 71.73 71.38 72.95 71.99 €314 12.50 12.50 12.50 12.50
egq 54.69 54.41 55.67 54.91 €316 12.30 12.08 12.97 12.47
[2%0) 29.02 28.76 29.80 29.22 m 77.60 76.91 79.69 78.13
73 36.73 36.37 37.78 36.99 ey 166.12 165.26 168.93 166.66
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