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摘　要：煤矸识别技术是综放工作面实现智能化的关键技术之一，同时也是该领域面临的一个重要

挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别

精度低等问题，参考实际综放工作面搭建了大尺寸等比例综放开采相似模拟平台，基于该平台建

立了煤矸图像采集系统，采集构建了高清仿真综放工作面煤矸图像数据集，提出一种基于特征金

字塔网络 (FPN) 和空洞空间金字塔池化 (ASPP) 的改进 U−Net 煤矸分割模型，提高了煤矸图像的

分割精度。通过在 U−Net 模型的跳跃连接中添加 FPN 模块，同时在解码器部分引入 ASPP 模块，

建立了 FPN−ASPP−U−Net 煤矸分割模型，消融试验验证了 FPN 模块和 ASPP 模块对 U−Net 模型

性能的提升。结果表明：FPN−ASPP−U−Net 模型分割效果最好，均准确率 (MA) 为 97.29%，均 F1
得分 (MF1) 为 97.44%，均交并比 (MI) 为 95.65%，模型参数量 (MP) 为 29.64 M，浮点运算量 (F) 为

341.29  G，每秒帧数 (f) 为 41.1  f/s，与 U−Net 模型相比，MI、MF1 和 MA 分别提升了 2.64%、

1.06% 和 1.15%，模型参数量仅仅增加了 0.33 M，改进后的模型在图像分割速度上有少量提升。

设计了 FPN−ASPP−U−Net 模型与 PSPNet、SegFormer、DeepLabV3+、PSANet 语义分割模型的图

像分割效果对比试验，结果表明：FPN−ASPP−U−Net 模型对煤矸图像分割的性能最好，同时模型

整体计算参数量最小，在分割精度和分割速度之间有着较好的平衡。对于粉尘影响下的不清晰图

像，采用暗通道与高斯加权相结合的方法对图像数据集进行去雾增强，轻度粉尘、中度粉尘、重

度粉尘去雾前后的模型对煤的分割精度提高了 14.81%、17.79%、23.62%，对矸的分割精度提高了

11.73%、14.50%、14.86%。基于研究结论提出了 FPN−ASPP−U−Net 模型的煤矸图像混矸率计算

方法，开展了煤矸图像分割控制放煤试验，以混矸率 20% 作为放煤口关闭的阈值，单次放煤口开

关期间真实混矸率与模型预测混矸率平均误差率为 4.71%，验证了基于煤矸图像混矸率对放煤控

制的可行性。最后，封装模型代码研发了煤矸图像智能识别软件，设计了煤矸分割现场应用方案，

在榆树田煤矿 110501 综放工作面进行了图像控制放煤试验，验证了该方法能够对煤矸图像进行精

准分割，对放煤口开关进行合理控制，提高了综放工作面的智能化水平，为推动煤矿进一步智能

化建设提供了有效的技术手段与参考价值。
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Abstract: Coal gangue identification technology is  a  critical  component  for  the automation of  fully mechanized mining
faces and represents a significant challenge within this domain. To address the challenges of suboptimal quality and lim-
ited scale of existing coal gangue image datasets, as well as the slow detection speeds and low recognition accuracy of coal
gangue image segmentation models, a large-scale, proportionally accurate simulation platform for fully mechanized min-
ing faces has been established, drawing from real-world mining scenarios. Utilizing this platform, a coal gangue image ac-
quisition  system  has  been  developed  to  construct  a  high-resolution,  simulated  dataset  of  coal  gangue  images  for  fully
mechanized top coal caving face. An advanced U−Net−based coal gangue segmentation model has been developed, incor-
porating Feature Pyramid Networks (FPN) and Atrous Spatial Pyramid Pooling (ASPP). This approach significantly im-
proves the segmentation accuracy of coal gangue images. By incorporating the Feature Pyramid Networks (FPN) module
into the skip connections of  the U−Net architecture and integrating the Atrous Spatial  Pyramid Pooling (ASPP) module
within the decoder stage, a novel FPN-ASPP−U−Net coal gangue segmentation model has been developed. Ablation stud-
ies  confirmed  that  the  integration  of  the  FPN and  ASPP modules  significantly  enhances  the  performance  of  the  U−Net
model.  The  FPN−ASPP−U−Net  model  exhibits  superior  segmentation  efficacy,  achieving  a  mean  accuracy  (MA)  of
97.29%,  a mean F1-score (MF1) of 97.44%,  and a mean Intersection over Union (MI) of 95.65%.  The model's parameter
count is 29.64 M, with FLOPs (F) 341.29 G and a frame rate (f) of 41.1 frames per second. Relative to the baseline U−Net
model, the MI, MF1, and MA are improved by 2.64%, 1.06%, and 1.15%, respectively, with only a marginal increase of 0.33
M. This enhancement results in a modest improvement in image segmentation speed. A rigorous comparative analysis was
conducted  to  evaluate  the  performance  of  the  FPN−ASPP−U−Net  model  relative  to  PSPNet,  SegFormer,  DeepLabV3+,
and PSANet for image segmentation tasks.  The results  substantiate that  the FPN−ASPP−U−Net model delivers superior
performance in coal gangue image segmentation, while also maintaining the lowest overall computational parameter count.
This  model  demonstrates  a  well-balanced  compromise  between  segmentation  accuracy  and  computational  efficiency,
thereby optimizing both precision and processing speed in practical scenarios. In response to image degradation caused by
dust, a hybrid dehazing approach leveraging dark channel prior combined with Gaussian weighting was implemented on
the image dataset. This methodology significantly enhanced segmentation accuracy. Specifically, for coal, the segmenta-
tion accuracy improved by 14.81%, 17.79%, and 23.62% under light, moderate, and severe dust conditions, respectively.
For gangue, segmentation accuracy saw improvements of 11.73%,  14.50%,  and 14.86% under the same dust conditions.
These  enhancements  demonstrate  the  effectiveness  of  the  proposed dehazing strategy in  mitigating  dust-related  artifacts
and improving segmentation performance across varying levels of dust intensity. Building on the research conclusions, a
method  for  calculating  the  gangue  mixture  rate  in  coal  gangue  images  utilizing  the  FPN−ASPP−U−Net model  was  de-
veloped. A control experiment for the drawing opening was performed, with a threshold of 20% gangue mixture rate estab-
lished for closing the drawing opening. During a single operational cycle of the drawing opening, the average discrepancy
between the actual and model-predicted gangue mixture rates was 4.71%,  thereby confirming the viability of employing
gangue  mixture  rate  measurements  from  coal  gangue  images  for  effective  discharge  control.  Finally,  the  encapsulated
model code facilitated the development of an intelligent software solution for coal gangue image recognition. An applica-
tion framework for gangue segmentation in operational environments was designed, and an image-based discharge control
experiment was conducted at the 110501 fully mechanized mining face of the Yushutian coal mine. The validation of this
methodology demonstrated its capability to perform accurate segmentation of coal gangue images and to facilitate rational
control of  the drawing opening.  This advancement has significantly enhanced the automation level  of  the fully mechan-
ized mining  face,  providing  a  robust  technical  framework  and  valuable  reference  for  advancing  the  intelligent  develop-
ment of coal mining operations.
Key words: top coal caving；coal-gangue recognition；image segmentation；gangue rate；U−Net model

 

 

第 5 期 　袁　永等：基于改进 U−Net的煤矸图像分割模型与放煤控制技术 2723



0　引　　言

我国长期以来一直是煤炭资源的重要消费国[1]，

2000年—2020年，我国一次能源消耗中煤炭消耗占

比 0.57%～69%，自从“碳达峰、碳中和”倡议提出以

来，煤炭的消费量逐年下降，但仍然保持在 50% 以上，

在相当长的时间里，煤炭一直是我国最为重要的能源

资源[2-4]。煤炭智能开采是煤炭行业实现高质量发展

的必然选择，而综放工作面的智能化程度相对滞后于

综采工作面[5-6]。

目前，综放工作面普遍采用人工控制放煤口开关

进行放煤的方式，推进综放工作面智能化，实现放煤

口自动控制的关键在于对放煤口的后部刮板输送机

上的煤矸混流进行智能区分识别—煤矸识别[7-8]。研

究图像识别技术并将其应用于放顶煤工作面的煤矸

识别具有重要意义，该技术的应用可以提升我国厚煤

层智能开采的科技水平与效益，提高放煤效率并降低

误操作风险，实现智能放煤并推动煤炭行业智能化发

展[9-11]。

近年来，国内外学者在煤矸识别方面取得了较多

的研究进展。孙继平等[12]提出了一种基于 CLBP和

支持向量的煤矸识别方法，包括特征提取、字典学习

和类别判定。试验证明该方法具有较高的正确率和

存储效率；伍云霞等[13]提出基于字典学习算法的煤矸

图像特征提取方法，可使识别率达到 96.15%；田慧卿

等[14]以灰度值和纹理作为表征煤矸的特征向量进行

煤矸识别，多特征的准确率大于单特征的煤矸识别率。

借助于深度学习图像识别技术强大的学习能力，逐渐

被引入煤矸识别领域[15-17]。曹现刚等[18]提出了一种

基于卷积神经网络的煤矸识别定位系统，利用改进的

神经网络进行图像识别和定位，满足了煤矿分选的要

求；郭永存等[19]则通过结合迁移学习和结构优化，得

出基于 TW−RN优化 CNN的煤矸识别模型，显著提

高了模型性能；LI等[20]对 YOLOv3算法进行了改进，

显著提高了对小目标煤矸的检测精度；ALFARZAE-
AI等[21]构建了 CGR−CNN煤矸石识别模型，并通过

应用增强原理对数据集进行扩容来训练模型，最终实

现了高达 98.75% 的总体预测准确率；徐志强等[22]构

建了一个轻量化的煤矸图像识别模型 (ResNet结合

SqueezeNet)，根据各模型在训练过程中的收敛情况，

成功实现了模型的压缩，提高了效率。张释如等[23]在

YOLOv5模型的空间金字塔池化模块添加空洞卷积，

增大输出感受野，最终模型精度提升了 2.27%。何凯

等[24]针对井下煤矸聚集问题，在 YOLOv5s模型中引

入 CA注意力机制和 EIoU损失函数，最终检测精度

提高至 94.8%；崔斌等[25]在 YOLOv4模型中引入 Fo-
cal函数与空洞卷积的金字塔结构，并将卷积模块为

CSP模块，检测精度提升至 98.14%。

深度学习图像识别技术的迅速发展使得基于图

像的煤矸识别技术成为了可能，笔者将该技术引入到

综放工作面煤矸识别中，实现对综放工作面煤矸图像

的分割，进而获得综放工作面混矸率数据，指导放煤

口的自动控制，推动综放工作面智能化发展。 

1　煤矸图像数据集构建
 

1.1　放顶煤模拟试验平台

深度学习图像识别技术迅速发展，已广泛渗透于

各个行业、各个领域。为基于图像的煤矸识别技术提

供了技术保障，图像数据集的质量决定了图像识别模

型的准确性和泛化能力。将深度学习图像识别技术

引入到综放工作面放煤口煤矸识别中，首要任务是构

建一个高质量且大规模的煤矸图像数据集作为研究

基础。

然而，对于复杂的煤矿生产环境，构建煤矸图像

数据集也是最困难的，这也使得图像识别的前沿性理

论难以适用于煤矿工程实践。本文用自主研制的放

顶煤模拟试验平台，开展了模拟放煤试验，并搭建了

相应的煤矸图像采集系统收集煤矸图像，建立煤矸图

像数据集，模拟试验平台如图 1所示。

该平台可实现等比例缩放模拟综合机械化放顶

煤工作面。该平台主体由上料框、下料框、下部主承

力框、模拟支架、后刮板输送机、移架油缸、回收料箱

等几个部件组成。料框部分采用透明材料，便于观察

和拍摄。下部主承力框设计成透明，便于观察，下半

部设有金属随动挡板，可以跟随刮板输送机移动，防

止物料放落过程中溢出。支架尾梁通过液压油缸调

节放落角度，插板通过油缸可以打开或关闭。刮板输

送机由电动驱动，通过滚筒、链轮带动传动链条工作，

可将放落的物料带出。

平台的尺寸为 3.3 m×2.2 m×0.9 m(长×高×宽)，主
要组成部分包括煤矸物料框架、放顶煤液压支架

(ZFY12000/23/34型号支架相似比 1∶6)、后部刮板输

送机、图像采集装置 (高速摄像机)、电液控系统等。

移架油缸拉力设计为 2 t，采用 PLC控制，每启动 1次，

支架移动 1个步距。支架上表面用聚四氟材料粘贴

进行降低摩擦力处理。支架操作全程由电液控制，可

按设定步骤进行试验，也可人工操作系统进行试验。

放煤口的开闭状态可通过放煤支架伸缩插板进

行模拟。该平台搭建了 3台放顶煤液压支架，共设有

3个放煤口，可最大程度上还原实际放煤情况，采一放
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一，煤矸颗粒随推进逐步下落。平台最大推进步距为

8个推进步距，整个放煤流程如图 2所示。

该试验平台液压支架尾梁可绕掩护梁进行转动，

插板可自由伸缩。放煤开始后，煤矸流经过放煤口落

入后刮板，在放煤口和刮板输送机上方布置高速摄像

机捕捉不同时刻煤矸放出图片，煤矸图像采集系统如

图 3所示。

煤矸图像采集系统包括 2个视角，其位置设计考

虑了后续在煤矿现场的指导需求。A视角位于放煤

支架后部刮板输送机上方，用于捕捉刮板输送机排出

 

煤矸物料箱

掩护梁

等比例ZFY12000/23/34液压支架

尾梁

推移油缸 插板

后刮板

图 1    大尺寸等比例放顶煤模拟实验平台

Fig.1    Large-size iso-scale simulation experimental platform of top coal caving mining

 

初始状态 开始放煤 第1次放煤 第2次放煤

第3次放煤 第5次放煤 第7次放煤 放煤结束

图 2    放顶煤开采模拟试验流程

Fig.2    Simulation experiment process of top coal caving mining
 

(a) 视角A (b) 视角B

高清摄像机
高清摄像机

图 3    煤矸图像采集系统

Fig.3    Coal and gangue image acquisition system
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的煤矸图像；B视角位于中间放煤支架立柱梁上，用于

捕捉 3个放煤口处的煤矸图像。每个视角都配备了

1个高速摄像机和 2个灯源。摄像头选用 USB工业

级相机，可通过 USB直接连接电脑进行图像采集，最

高帧率可达 480帧/s，能够监测和识别高速运动物体。

为了克服光照对高速摄像机的影响，确保获取的煤矸

图像质量，综合考虑应用情况，选择了 ULANZI VL49
白光光源。 

1.2　煤矸图像数据集构建

运用上述搭建的放顶煤模拟平台进行煤矸图像

数据集构建，通过煤矸图像采集系统共采集到约

15 000张煤矸图像，并对原始图像样本进行预处理操

作 (筛选有效图像、统一图像尺寸)，经该过程之后共

获得了约 9 000张煤矸图像。

按照 PASCAL VOC(Visual  Object  Classes)数据

集的格式制作煤矸图像数据集，使用 CVAT图像标注

软件，对煤矸图像进行人工标注，标注方法为沿着煤

矸颗粒的轮廓进行人工点“点”，最终的轮廓为多个

 “点”构成的不规则多边形，操作示意如图 4a所示，

将 CVAT标注的文件转化为 PASCAL VOC数据集格

式，其中可视化分割标签如图 4b所示。

最终得到的煤矸图像数据集包含 9 436个样本。

按照 6∶2∶2的比例，将数据集划分为训练集、验证

集和测试集。 

2　煤矸图像分割模型
 

2.1　U−Net 模型

图像分割是根据图像中的语义信息将图像划分

成多个语义上有意义的区域，实现像素级别的分类。

RONNEBERGER等 [26]提出了 U−Net模型实现图像

分割任务，该模型采用编码器−解码器结构。相比传

统网络，它在少量样本下表现更加出色且分割速度更

快，被广泛应用于多个领域。

U−Net模型结构如图 5所示，由左侧的编码器

(Encoding)、中间的跳跃连接 (Skip Connection)和右

侧的解码器 (Decoding)组成。其中，编码器通过 4个

结构相同的子模块提取出 4种不同尺度的特征图，每

个子模块包含卷积层、ReLU激活函数和最大池化层；

跳跃连接负责将这 4个特征图传递到解码器中；解码

器与编码器的结构对称，通过集成相应编码层输出的

浅层特征图来补充图像的细节特征，并通过上采样逐

层恢复特征图的分辨率，生成分割结果。U−Net在通

道维度上对不同尺度特征图进行连接，具有更好的特

征融合效果，本研究选择 U−Net作为后续煤矸图像分

割模型中的基础结构。
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3×3 Conv ×2
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跳跃连接

图 5    U−Net模型结构示意

Fig.5    Schematic diagram of U−Net mould structure
  

2.2　特征金字塔

特征金字塔[27](Feature Pyramid Network，FPN)是
一种用于目标检测和语义分割任务的网络结构，可以

从每一种尺度的图像进行特征提取，从多尺度角度上

进行特征表示，从而提高模型在多尺度目标检测和语

义分割任务中的性能，其结构如图 6所示。

FPN整体由自下而上 (Bottom-up)和自上而下

 

JPEG图像 分割类PNG 细分类可视化

(a) 煤矸数据集标注方法

(b) 可视化煤矸图像分割标签

图 4    煤矸图像标注分割示意

Fig.4    Schematic diagram of annotated segmentation of

coal gangue image
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(Top-down)2部分构成。在网络的不同层次，可以利

用不同层次的特征完成不同目标的分割。最终得到

不同尺度的特征图，且每一个特征图中都有丰富的语

义信息。 

2.3　空洞空间金字塔池化

空洞空间金字塔池化[28](ASPP)最初出现于 Dee-
pLabv2语义分割模型，利用多个不同采样率的空洞卷

积并行采样输入，捕获不同尺度上的图像上下文信息。

传统的池化操作会损失位置和密集语义信息，而 ASPP
通过空洞卷积保持图像分辨率，减少参数和计算依赖，

实现有效的感受野扩大和上下文信息聚合。

对于输入特征图 y 的每个位置 i 和滤波器 w，应

用空洞卷积为

yi =

k∑
i=1

x(i+ rk)w(k) (1)

式中：k 为卷积核大小，Px；r 为采样率。

空洞卷积可以控制滤波器的感受野和输出特征

的紧凑程度，而不增加参数量和计算量，ASPP结构图

如图 7所示。
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rate=3
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Global 
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Concat
输入特
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图 7    ASPP结构示意

Fig.7    Schematic diagram of ASPP structure
  

2.4　FPN-ASPP-U−Net 图像分割模型

综放工作面放煤口放出的煤矸图像具有较强的

空间信息，煤矸放出的尺寸跨度大并且煤与背景 (刮
板输送机)较为相似，U−Net基础模型对这种尺寸跨

度大、分割目标与背景相似程度比较高的特征表示

较差。

为了解决 U−Net模型用于煤矸图像分割面临的

特征表达能力和感知能力较弱的问题，以经典语义分

割 U−Net模型为基础，引入了 FPN和 ASPP结构，提

出 FPN−ASPP−U−Net煤矸图像语义分割模型 ，如

图 8所示，该模型进一步提高了 U−Net模型对不同尺

度目标的分割能力，使模型能够更好地适应复杂的场

景和目标形态。

本文提出的 FPN−ASPP−U−Net模型结构和 U−
Net语义分割模型类似，分为编码器部分、跳跃连接和
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2x up
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预测

横向连接

自
下
而
上

自
上
而
下

图 6    FPN结构示意

Fig.6    Schematic diagram of FPN structure
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图 8    FPN-ASPP-U−Net语义分割模型

Fig.8    FPN-ASPP-U−Net semantic segmentation model
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解码器 3个部分。FPN−ASPP−U−Net模型在 U−Net
的跳跃连接部分 (中间特征提取层)构建了 FPN结构。

网络中使用 U−Net的编码器部分提取图像的特征，这

些特征将被用作 FPN的输入。FPN自下而上的路径

可以利用 U−Net编码器的特征图，自上而下的路径则

用于将高级语义特征向下传播，与低级特征进行融合，

使得 U−Net在不同尺度上都具有丰富的语义信息。

通过将 FPN输出的特征图传递给 U−Net的解码器

部分。

为了更充分利用网络在不同深度上学习到的信

息，在解码器部分引入 ASPP模块，充分利用了网络在

不同深度上学习到的信息，提高了分割模型的精度。 

2.5　图像分割模型评价指标

煤矸图像分割属于语义分割领域的范畴，其评价

指标与图像分类同样是根据混淆矩阵 (confusion mat-
rix)，该矩阵是大小为 (C，C)的方阵，其中 C为类别数

量，可从中得知每个类别的预测情况。以煤矸图像分

割为例，根据真实标签与预测结果的不同组合，可将

混淆矩阵分为表 1中的 4种情况。
 
 

表 1    图像分割的混淆矩阵

Table 1    Confusion matrix for image segmentation

实际
预测 预测

煤 矸石

煤 TP FN

矸石 FP TN
　　注：TP为被模型预测为正类的正样本；TN为被模型预测为负类的

负样本；FP为被模型预测为正类的负样本；FN为被模型预测为负类的

正样本。
 

本文从混淆矩阵中计算出平均准确率 (MA)、F1-
Score(MF1)、交并比 (RI)、平均交并比 (MI)、Dice指数

(VDice)、平均 Dice系数 (MDice)来作为各模型分割效果

的评价指标[29]，具体如下。

1)平均准确率 MA，计算公为

MA =
TP+TN

TP+FP+TN+FN
(2)

2) F1-得分 MF1，计算式为

MF1 =
2PR
P+R

(3)

P =
TP

TP+FP
(4)

R =
TP

TP+FN
(5)

3)交并比 RI，计算式为

RI =

∣∣∣∣∣∣SSeg∩SGT

SSeg∪SGT

∣∣∣∣∣∣ = TP

TP+FP+FN
(6)

4)平均交并比 MI，计算式为

MI =

C∑
i=1

RIi

C+1
(7)

5) Dice指数，计算式为

VDice = 2

∣∣∣∣∣∣SSeg∩SGT

SSeg+SGT

∣∣∣∣∣∣ = 2TP

2TP+FP+FN
(8)

6)平均 Dice指数，计算式为

MDice =

C∑
i=1

VDicei

C+1
(9)

f

此外，本文还通过模型参数量 (Parameters，MP)，
浮点运算量 (Floating Point Operations，F)和每秒帧数

(Frames Per Second， )来评估煤矸图像分割模型的计

算开销。 

3　煤矸图像分割试验结果与分析
 

3.1　试验环境配置及训练参数

本文试验使用 Pycharm作为编程软件，对应的版

本号 2023.1.1；使用 Pytorch作为模型训练和验证的框

架，对应的版本号为 1.9.0，其封装了很多深度学习方

法，可以更加方便搭建网络；使用 Python作为编程语

言；使用 NVIDIA GeForce RTX 3070显卡进行试验，

搭建了 CUDA11.1和 cuDNN框架，提供高效的计算

和数据传输，大幅提高了深度学习算法的训练速度，

煤矸图像分割模型训练参数见表 2。
 
 

表 2    煤矸图像分割模型训练参数

Table 2    Coal-gangue image segmentation model training
parameters

参数 选取结果

损失函数 Cross Entropy Loss

批次大小 4

优化器类型 SGD

学习率 0.01

迭代次数 8 000

网络评价指标 MDice
 

由于在解码器部分引入了 ASPP模块，选择了组

合损失函数 (Cross Entropy Loss+Dice Loss)。交叉熵

损失函数 (Cross Entropy Loss)用于解码器最后一层

输出的损失计算，其衡量了模型预测的像素与真实标
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签之间的差异。其优势在于不受多分类问题中不同

类别尺度和占比的影响。而 Dice被用作 ASPP输出

的损失计算，Dice是一种衡量预测分割结果与真实分

割结果重叠程度的指标，通常用于图像分割任务中，

特别是在边缘部分的分割。通过结合交叉熵损失和

Dice损失，能充分利用其各自的优势，从而在整体分

割效果和边缘部分准确性上都取得提升。其中，交叉

熵损失函数的权重为 1.0，而 Dice损失函数的权重

为 0.4。
选择优化器类型为随机梯度下降 (Stochastic

Gradient Descent，SGD)。其中指定动量 (momentum)
参数为 0.9，动量是一种在更新过程中添加的项，可以

加速收敛，并且有助于跳出局部最优解。权重衰减

(weight decay)参数为 0.000 5，用于防止模型过拟合。

指定了学习率调整的策略为多项式衰减 (Polyno-
mial Decay)。多项式衰减是一种常用的学习率调整策

略，通过多项式函数来动态调整学习率。多项式衰减

函数的幂次数为 0.9，其决定了学习率的衰减速度。

学习率的下限为 0.000 1，以避免学习率过小导致训练

过程过于缓慢。 

3.2　训练策略

1) Dropout正则化。Dropout是一种常用的深度

学习正则化技术，其目的在于减少神经网络在训练阶

段可能出现的过拟合现象。Dropout通过在每个训练

批次中随机丢弃部分神经元的输出，从而减少神经元

之间的联合适应性，降低模型对特定特征的依赖程度，

提高模型的泛化性能。本章在训练过程中，每个神经

元以概率 p 被保留，而以概率 1-p 被丢弃。经测试设

置为 0.1，在测试阶段，不应用 Dropout，通过对权重进

行缩放来调整模型，权重会被乘 p，以保持预期的激

活值。

2) 类标签平滑。在深度学习中，类标签平滑是一

种用于改善模型输出的技术。它通过将硬性的 One-

hot编码标签转换为软性的概率分布，减少模型的过

度自信性，提高其泛化能力。通常使用交叉熵损失函

数，并逐渐将目标标签的概率从 1向其他类别平滑过

渡，以减少对训练数据的过度拟合。类标签平滑已在

多个领域中取得了成功应用。本章中将平滑参数设

为 0.1，以确保真实标签的概率从 1.0减少到 0.9。 

3.3　试验结果

1)模型消融试验量化结果对比。为验证本文提

出模型的有效性，进行消融对比实验。在表 3中，

U−Net为 U−Net基础模型；FPN−U−Net为在 U−Net
基础模型引入 FPN模块；ASPP−U−Net为在 U−Net
基础模型添加 ASPP模块；F−A−U−Net为在 U−Net
基础模型同时引入 FPN、ASPP模块；FPN−ASPP−
U−Net在 F−A−U−Net模型的基础上选择组合损失函

数 (Cross Entropy Loss+Dice Loss)作为网络的损失函

数，其余损失函数皆为 Cross Entropy Loss。
由表 3可知，FPN−U−Net在添加了 FPN模块后，

虽然模型复杂度增加，但提高了模型煤矸图像分割的

性能；ASPP−U−Net说明 ASPP模块的加入，能够更好

的利用网络在不同深度上学习到的信息，使语义信息

更加丰富；F−A−U−Net说明同时引入 FPN与 ASPP
模块可进一步优化网络 ，提高模型的分割性能 ；

FPN−ASPP−U−Net由于添加了 DiceLoss，提高了网络

性能，说明本文提出的组合损失函数能够较好地增强

煤矸图像分割模型性能，使其为训练网络贡献更多的

损失，从而提高煤矸图像的分割精度。

试验证明，提出的 FPN−ASPP−U−Net模型分割

效果最好，MI、MF1 和 MA 相比于 U−Net模型分别提

升了 2.64%、1.06% 和 1.15%，模型参数量仅仅增加

了 0.33 M。训练过程中的损失函数曲线如图 9所示，

其结果与表 3量化分析结果一致，FPN−ASPP−U−Net
模型最终损失值最低，且最终稳定在 0.09左右，相对

其他方法分别提高了 0.1、0.05、0.04、0.03。
 
 

表 3    消融试验量化结果对比

Table 3    Comparison of quantitative results of ablation experiments

模型 MA/% MF1/% MI/% MP/M F/G f/(f·s−1)

U−Net 96.14 96.38 93.01 29.06 316.52 44.2

FPN−U−Net 96.23 96.31 93.88 29.34 339.96 42.2

ASPP−U−Net 96.11 96.34 93.84 29.07 317.86 43.6

F−A−U−Net 96.99 97.34 94.86 29.39 341.29 41.3

FPN−ASPP−U−Net 97.29 97.44 95.65 29.39 341.29 41.1

　　注：MA、MF1、MI、f为望大特性；MP、F为望小特性。
 

2)模型消融试验可视结果对比。煤矸图像分割

模型消融试验可视化结果对比如图 10所示，其结果

与模型消融实验量化对比结果结一致，FPN−ASPP−
U−Net模型对于煤矸图像分割效果最佳，对图 10a存
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在的小目标煤块，其边缘与周围的刮板输送机具有相

似的颜色、纹理，致使其在不同程度上被其他模型错

误地分类为背景，而 FPN−ASPP−U−Net模型则检测

出了大部分的小目标煤矸，这得益于 ASPP能保留充

足的语言信息，降低了对小尺寸煤矸的漏预测。图 10b
中，因矸石的大部分区域被煤块覆盖，其部分无法被

识别分割，FPN−ASPP−U−Net模型凭借高表征能力的

多尺度和丰富的语义信息有效地避免了这种误预测。

在面对由众多形状、尺寸、纹理煤矸组成的刮板输送

机的复杂煤流时，FPN−ASPP−U−Net模型均展现出了

较强的鲁棒性。

3)不同模型试验结果对比。为了进一步验证

FPN−ASPP−U−Net模型的优越性，将本文提出的模型

与 PSPNet、SegFormer、DeepLabV3+、PSANet 4种图

像分割模型在相同试验环境、数据集和训练策略下进

行对比试验，其他 4种模型结构均为标准原始模型，

参数除表 2规定的参数外均采用默认参数，量化分析

结果见表 4，混淆矩阵如图 11所示。

笔者所提出的 FPN−ASPP−U−Net模型的 MA、MF1

和 MI 3种指标分别为 97.29%、97.44% 和 95.65%，相

比于其他网络中表现最好的 PSANet，3种指标上分别

以 1.23%、1.13% 和 2.78% 较大的优势领先，具有最

小的模型参数量，由此也证明了笔者提出的 FPN−
ASPP−U−Net模型相对于 PSPNet、SegFormer、Dee-
pLabV3+和 PSANet模型，对于煤矸图像分割的性能

最好。

不同模型进行煤矸图像分割结果如图 12所示。
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计算时步

U−Net
FPN−U−Net
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图 9    模型训练损失曲线对比

Fig.9    Comparison of model training loss curves

 

U−Net FPN−U−Net ASPP−U−Net F−A−U−Net FPN−ASPP−U−Net原图

U−Net FPN−U−Net ASPP−U−Net F−A−U−Net FPN−ASPP−U−Net原图

(a) 消融试验对比1

(b) 消融试验对比2

图 10    消融试验可视化结果对比

Fig.10    Comparison of ablation experiment visualization results
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由图可知，FPN−ASPP−U−Net模型在煤矸图像分割方

面具有出色的效果。在图 12a中，只有 PSANet和
FPN−ASPP−U−Net网络能够完整地将矸石分割出来，

而在图 12b中，只有 FPN−ASPP−U−Net网络的分割

效果较为符合实际情况，其他网络的预测图中存在部

分误判。这主要是因为在该区域，矸石的颜色与煤相

似，容易被误判为煤块。相比较其他方法，FPN−ASPP−
U−Net网络在煤矸分割的精度上表现更佳，具有较低

的遗漏率和误检率，展现出显著的优势。 

4　煤矸图像混矸率计算与试验
 

4.1　高粉尘图像去雾增强

在放顶煤模拟试验过程中，煤矸颗粒在碰撞破碎

过程中会产生粉尘影响采集的图像质量，结合实际综

放工作面的高粉尘环境，本节重点讨论粉尘对煤矸图

像识别效果的影响。

因试验中煤矸碰撞产生的粉尘较少，无法模拟综

放工作面的高粉尘，通过人工准备煤粉，利用风扇制

造粉尘，轻度粉尘利用白色粉末制备，中度粉尘为白

色粉末与黑色粉末混合制备，重度粉尘为黑色粉末制

备，如图 13所示，采集到不同粉尘浓度的煤矸图像，

如图 14所示。

当粉尘浓度较低时，如图 14a—图 14c，粉尘对煤

矸识别结果影响较小；当粉尘浓度较高时，如图 14d—
图 14h，图像整体模糊，煤矸边缘轮廓不清晰，特征不

明显，导致训练得到的模型无法准确地区分煤与矸石，

需要消除粉尘对煤矸图像采集的影响。

笔者针对部分采集的高粉尘图像，采用双暗通道

结合与高斯加权结合的去雾改进的方法[30]对图像进

行增强处理。HE等[31]提出了一种基于暗通道的透射

率的估计方法，该方法利用暗通道先验知识可以求出

透射率 t(x)与大气光值 A，透射率的计算式见式 (10)。

t(x) = 1−ωmin
y∈Ω(x)

(
min

c∈{r,g,b}

Ic(y)
Ac

)
(10)

 

表 4    不同模型的试验结果对比

Table 4    Comparison of experimental results among different models

模型 MA/% MF1/% MI/% MP/M F/G f/(f·s−1)

PSPNet 94.94 95.92 91.12 48.96 278.79 42.9

SegFormer 96.01 96.06 91.42 68.10 421.32 19.3

DeepLabV3+ 96.03 96.27 92.81 43.58 275.35 28.2

PSANet 96.06 96.31 92.87 59.13 312.08 47.2

本文方法 97.29 97.44 95.65 29.64 341.29 41.1
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图 11    不同模型混淆矩阵

Fig.11    Confusion matrices of different models
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式中：x 为图像每个像素点的坐标；y 为该区域内所有

像素的位置；t(x)为介质透射率，代表在坐标 x 位置处

所有光线穿过雾的比例；Ic(y)为像素 y 处颜色通道 c
的强度值；ω 为引入的雾保留指数，一般取 0.95，无量

纲；Ω(x)为以坐标 x 为中心的滤波窗口；{r, g, b}表示

r，g，b 图像的 3个通道；c 为 r，g，b 中的某个通道；I 为
原有雾图像；A 为大气光，一般为无穷远处或雾最浓处

的值。最后利用大气散射模型恢复无雾图像，计算

式为

J(x) =
I(x)−A

max (t(x), t0)
+A (11)

式中：J(x)为恢复后无雾图像；t0 为避免透射率过低而

引入的常数，一般取 0.1。
但是该方法依赖于暗通道求取的准确性，HE采

用最小滤波计算得到的无雾图像具有明显的方块效

应，造成图像存在伪影效应，会影响模型对煤矸特征

的提取，影响分割精度。

针对上述问题，对暗通道算法进行改进，提出基

于双暗通道结合与高斯加权的透射率估计方法，分别

使用超像素滤波窗口与中值滤波窗口求取两层暗通

道，并对两层暗通道进行像素级结合，结合高斯函数

优化暗通道区域，最后利用式 (10)计算得出透射率进

行计算。

其中超像素滤波与中值滤波计算式为

I1 (x) =min
y∈ϕ(x)

[ min
c∈(r,g,b)

Ic(y)] (12)

 

PSPNet SegFormer DeepLabV3+ PSANet FPN−ASPP−U−Net原图

PSPNet SegFormer DeepLabV3+ PSANet FPN−ASPP−U−Net原图

(a) 分割试验对比1

(b) 分割试验对比2

图 12    不同模型可视化结果对比

Fig.12    Comparison of different model visualization results

 

图 13    粉尘模拟制备

Fig.13    Preparation dust simulation
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I2(x) =max
y∈Ω(x)

[ min
Ω∈{r,g,b}

Ic(y)] (13)

式中：I1(x)为超像素滤波，I2(x)为中值滤波；ϕ(x)为采

用超像素算法分割的具有相同景深的块；Ω(x)为
15×15的方形滤波窗口。

两层暗通道融合的计算式为

IS(x) = βI1(x)+ (1−β)I2(x) (14)

式中：Is(x)为融合后的暗通道图；β 为调节因子，一般

取 0.3。
图像结合后远景的暗通道值会偏小，导致原图存

在残雾，影响图像整体质量，故使用高斯加权函数进

行优化，计算式为

Ig(x) =
1

S (x)
[λ1IS (x)+G(x)× I3(x)] (15)

式中：Ig(x)为高斯优化后的暗通道；I3(x)为采用最小

值方块滤波的暗通道图；S(x)为总权值；G(x)为高斯

权重；其中 G(x)与 I3(x)的计算式为

G(x) = λ2e
[1.5−Is(x)]2

Z (16)

I3 (x) = min
y∈Ω(x)

( min
c∈(r,g,b)

Ic(y)) (17)

式中：Ω(x)为 15×15的方形滤波窗口；λ2 与 Z 为调整

高斯函数形状的参数，λ2 越大高斯曲线越高，Z 越大高

斯曲线越平缓。

由试验分析知：取 λ2=2，Z=0.6时，图像细节保留

完好，整体效果最好。最后结合式 (10)与式 (16)计算

得出透射率，将计算得到的透射率代入式 (11)即可得

出去雾增强的图像。

放顶煤模拟试验过程中，随着煤矸的逐步放出，

产生的煤尘浓度不同，采集图像的模糊程度也有所不

同。为研究不同煤尘浓度下的煤矸图像的图像增强

效果，使用图像增强算法对图像进行去雾处理，选择

轻度粉尘、中度粉尘、重度粉尘进行去雾前后的识别

对比。用训练好的本文模型对去雾前后的图像进行

测试，识别结果见图 15与表 5。
表 5结果表明：不同煤尘浓度下的去雾后图像识

别准确率均高于去雾前图像识别准确率。在粉尘的

影响下，粉尘浓度越大，模型对煤矸的误识率越高，在

高粉尘影响下煤的识别准确度仅有 63.22%。去雾后

轻度、中度、重度粉尘影响下，煤的识别准确度分别提

高了 14.81%、17.79%、23.62%，矸石的识别准确度分

别提高了 11.73%、14.50%、14.86%，图像去雾速度要

显著高于识别速度。试验结果表明在去雾算法能显

著提高粉尘影响下煤矸图像识别准确率。 

4.2　煤矸像素混矸率试验结果

混矸率数据是实现放煤口智能控制的核心数据。

图像分割可以准确计算综放工作面放煤口的煤矸混

流含矸率，为放煤口的智能控制提供重要支持。Ri 为

煤矸图像混矸率 (Image Gangue Mixed Rate，Rigm)指
从综放工作面放煤口放出并落在刮板输机上煤流中

的矸石表面积 (投影面积)与煤矸表面积的比值[32]，计

算式为

Ri =
Pg

Pc+Pg
×100% (18)

式中：Pc 为煤的投影面积，m2；Pg 为矸的投影面积，

m2。

为了最大化顶煤采出率，获取放煤口的混矸率数

 

(a) 粉尘体积分数5% (b) 粉尘体积分数10%

(c) 粉尘体积分数15% (d) 粉尘体积分数20%

(e) 粉尘体积分数25% (f) 粉尘体积分数30%

(g) 粉尘体积分数35% (h) 粉尘体积分数40%

图 14    不同粉尘浓度影响下煤矸图像

Fig.14    Image of coal waste under the influence of

different dust concentrations
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据，笔者基于 FPN−ASPP−U−Net模型对煤矸图像的

分割结果，实现混矸率的精确计算。

依据放顶煤模拟平台放煤情况计算真实混矸率，

验证依据煤矸图像分割后得出的混矸率。放煤开始

后，整个放煤过程如图 16所示，顶煤放出后共经历了

初始放煤、初始见矸、煤矸混流、大量见矸 4种状态。

使用一个完整放煤步距的采出率、混矸率为样本进行

后续研究使用。

将训练好的 FPN-ASPP-U−Net模型移植到放顶

煤模拟平台的煤矸图像采集系统中，应用煤矸图像分

割模型进行在线分割并输出分割结果，在一次完整放

煤中其输出分割结果如图 16所示。

输出分割结果对其中像素进行计算，以图 16为

例，图中红色像素点为煤块，绿色像素点为矸石，依据

式 (4)对其进行计算得出像素点的混矸率。该模型平

 

去雾前 去雾前识别 去雾后 去雾后识别

轻度粉尘

中度粉尘

重度粉尘

图 15    不同粉尘浓度对煤矸图像识别的影响

Fig.15    Effect of different dust concentrations on the recognition of coal gangue images

 

表 5    不同粉尘浓度对煤矸图像识别结果对比

Table 5    Comparison of image recognition results of gangue
with different dust concentrations

粉尘浓度
原图像识别准确度/% 去雾增强后图像识别准确度/%

煤 矸石 煤 矸石

轻度 80.51 84.46 95.32 96.19

中度 74.59 76.54 92.38 91.04

重度 63.22 70.81 86.84 85.67

 

初始放煤 煤矸混流

初始见矸 大量见矸

图 16    煤矸图像分割结果

Fig.16    Segmentation results of coal gangue image rate of coal discharge process
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均 1 s可以处理 43张照片，为进一步提高其容错率，

通过分析 5 s内的混矸率的平均值作为此时的混矸率，

为进一步判断本文提出的混矸率计算方法的适用性，

进行 3次完整的周期放煤的混矸率 (真实混矸率与预

测混矸率)变化的过程如图 17所示，其中真实混矸率

计算基础为该阶段获取的煤矸图像进行人工标注后

的实际分割标签。

如图 17所示，在开始放煤后，混矸率呈现逐渐增

加的趋势。具体而言，初始放煤阶段持续时间 160～
220 s，此时混矸率接近零；随后进入初始见矸阶段，持

续时间 85～95 s，此阶段混矸率在 5% 以下；之后进入

煤矸混流阶段，混矸率迅速增加，在试验进行至

415～425 s，混矸率达到 20%。

进一步对比真实混矸率与预测混矸率，3组试验

的平均误差率分别为 4.81%、4.08%、5.23%，总的平均

误差为 4.71%。

将混矸率 20% 设置为放煤口关闭的阈值，则以真

实或预测混矸率为判断标准时，放煤口在 400～425 s
之间关闭，验证了所采用方法能够准确计算混矸率。 

4.3　煤矸图像分割现场应用设计

实验室应用过渡到现场应用一直是工程科学领

域的难题。本节基于前文研究结果，设计了煤矸图像

井下实时分割技术方案。

1)系统硬件设计。选择 Pytorch 1.9.0版本；显卡

为 NVIDIA GeForce  RTX 4060；CUDA版本为 11.1、
cuDNN框架；图像采集设备选择工业防爆高速相机，

图像采集帧率最高可达 500帧/s，实际帧率依据软件

在井下实际的识别速度进行动态调整；根据矿井混矸

率要求设置混矸率阈值，通过通信模块发送停止放煤、

关闭放煤口、开启放煤口的控制指令。

2)图像采集视角位置确定。高速摄像机安装在

支架上，具体位置参考实验室安装位置 B，为保障整个

综放工作面识别的综合识别效果，每个高速摄像机采

集 3个支架区域内的煤矸图像。

3)煤矸图像智能识别软件。将本研究的去雾算

法与煤矸分割算法封装成集成系统“煤矸图像智能识

别软件”并与高速摄像机及支架电液控通信模块连接，

考虑到现实应用的实时性与识别过程的连续性，结合

软硬件的性能，高速摄像机的采集频率设置为 5张/s，
由表 4可知，软件的图像处理速度为 41.1帧/s，且提升

了硬件配置，因此可满足井下图像实现快速识别。

软件界面。如图 18所示，软件左侧为功能界面
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(b) 试验2
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(c) 试验3

初始放煤
阶段

初始见矸
阶段 煤矸混流阶段

真实混矸率

预测混矸率

图 17    混矸率随时间的变化曲线

Fig.17    Curve of gangue mixing rate with time

 

视频采集 图像截取 混矸率分析

图 18    软件界面

Fig.18    Software interface
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选择区域；右侧上方红框内为识别显示区域；右侧下

方绿框内为功能操作区域。

功能介绍。煤矸图像智能识别软件具备“视频采

集”、“图像截取”、“混矸率分析”。视频采集。煤矸

图像智能识别软件与高速摄像机连接，软件可直接获

取高速摄像机视角下的煤矸图像。图像截取。高速

摄像机会按照设定帧率逐帧截取煤矸图像并自动存

入软件中的“待读文件夹”，并标记图像的截取时间。

混矸率分析。软件自动识别“待读文件夹”中的煤矸

图像，计算图像中的煤矸像素占比作为混矸率，当混

矸率达到设置的阈值时，软件反馈通信模块停止

放煤。

4)图像识别现场应用。在夏阔坦矿业公司榆树

田煤矿 110501综放工作面进行煤矸图像分割识别，

采集的煤矸图像主要为煤矸混流阶段，煤矸图像截取

与分割效果如图 19所示，本文算法实现了煤矸图像

识别从实验室迁移到现场应用。 

5　结　　论

1)基于放顶煤工作面现场，搭建了放顶煤模拟平

台并建立了煤矸图像采集系统，参照 PASCAL VOC
数据集的格式构建了共含有 9 436张图像煤矸混合图

像数据集，为煤矸图像分割提供了训练数据。

2)以 U−Net图像分割模型为基础，在其跳跃连接

部分添加 FPN模块 (增强 U−Net模型对不同尺度信

息的感知能力)，解码器部分加入 ASPP模块 (充分利

用网络在不同深度上学习到的信息)，建立了 FPN−
ASPP−U−Net模型，并通过消融试验和不同模型之间

的对比实验，验证了 FPN和 ASPP模块对于 U−Net
模型的提升以及 FPN−ASPP−U−Net模型的优越性，

最终对于煤矸图像分割的 MI、MF1 和 MA 分别为

95.65%、97.44% 和 97.29%，单张煤矸图像处理时间

为 0.024 s。
3)对于粉尘影响下的难识别图片。提出双暗通

道结合与高斯加权结合的去雾改进法，研究了不同粉

尘浓度对煤矸图像识别准确度的影响，去雾前后在轻

度、中度、重度粉尘影响下，煤的识别准确度分别提高

了 14.81%、17.79%、23.62%，矸石的识别准确度分别

提高了 11.73%、14.50%、14.86%。

4)以 FPN−ASPP−U−Net煤矸图像分模型为基础，

得出了使用煤、矸石投影面积的煤矸图像混矸率计算

方法，在实验室检测了其应用效果，真实混矸率与预

测混矸率比对得出平均误差率仅为 4.71%，可准确计

算混矸率。将本研究算法封装成集成系统后在夏阔

坦矿业公司榆树田煤矿 110501综放工作面收集的煤

矸混流图像进行试验，验证了所采用方法能够精准分

割综放面现场的煤矸图像。
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