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Abstract: Coal gangue identification technology is a critical component for the automation of fully mechanized mining
faces and represents a significant challenge within this domain. To address the challenges of suboptimal quality and lim-
ited scale of existing coal gangue image datasets, as well as the slow detection speeds and low recognition accuracy of coal
gangue image segmentation models, a large-scale, proportionally accurate simulation platform for fully mechanized min-
ing faces has been established, drawing from real-world mining scenarios. Utilizing this platform, a coal gangue image ac-
quisition system has been developed to construct a high-resolution, simulated dataset of coal gangue images for fully
mechanized top coal caving face. An advanced U—Net—based coal gangue segmentation model has been developed, incor-
porating Feature Pyramid Networks (FPN) and Atrous Spatial Pyramid Pooling (ASPP). This approach significantly im-
proves the segmentation accuracy of coal gangue images. By incorporating the Feature Pyramid Networks (FPN) module
into the skip connections of the U—Net architecture and integrating the Atrous Spatial Pyramid Pooling (ASPP) module
within the decoder stage, a novel FPN-ASPP—U—Net coal gangue segmentation model has been developed. Ablation stud-
ies confirmed that the integration of the FPN and ASPP modules significantly enhances the performance of the U—Net
model. The FPN-ASPP-U—Net model exhibits superior segmentation efficacy, achieving a mean accuracy (M,) of
97.29%, a mean Fl-score (Mp,) of 97.44%, and a mean Intersection over Union (M;) of 95.65%. The model's parameter
count is 29.64 M, with FLOPs (F) 341.29 G and a frame rate (f) of 41.1 frames per second. Relative to the baseline U—Net
model, the M, Mz, and M, are improved by 2.64%, 1.06%, and 1.15%, respectively, with only a marginal increase of 0.33
M. This enhancement results in a modest improvement in image segmentation speed. A rigorous comparative analysis was
conducted to evaluate the performance of the FPN—ASPP—U—Net model relative to PSPNet, SegFormer, DeepLabV3+,
and PSANet for image segmentation tasks. The results substantiate that the FPN—ASPP—U—Net model delivers superior
performance in coal gangue image segmentation, while also maintaining the lowest overall computational parameter count.
This model demonstrates a well-balanced compromise between segmentation accuracy and computational efficiency,
thereby optimizing both precision and processing speed in practical scenarios. In response to image degradation caused by
dust, a hybrid dehazing approach leveraging dark channel prior combined with Gaussian weighting was implemented on
the image dataset. This methodology significantly enhanced segmentation accuracy. Specifically, for coal, the segmenta-
tion accuracy improved by 14.81%, 17.79%, and 23.62% under light, moderate, and severe dust conditions, respectively.
For gangue, segmentation accuracy saw improvements of 11.73%, 14.50%, and 14.86% under the same dust conditions.
These enhancements demonstrate the effectiveness of the proposed dehazing strategy in mitigating dust-related artifacts
and improving segmentation performance across varying levels of dust intensity. Building on the research conclusions, a
method for calculating the gangue mixture rate in coal gangue images utilizing the FPN—ASPP—U—Net model was de-
veloped. A control experiment for the drawing opening was performed, with a threshold of 20% gangue mixture rate estab-
lished for closing the drawing opening. During a single operational cycle of the drawing opening, the average discrepancy
between the actual and model-predicted gangue mixture rates was 4.71%, thereby confirming the viability of employing
gangue mixture rate measurements from coal gangue images for effective discharge control. Finally, the encapsulated
model code facilitated the development of an intelligent software solution for coal gangue image recognition. An applica-
tion framework for gangue segmentation in operational environments was designed, and an image-based discharge control
experiment was conducted at the 110501 fully mechanized mining face of the Yushutian coal mine. The validation of this
methodology demonstrated its capability to perform accurate segmentation of coal gangue images and to facilitate rational
control of the drawing opening. This advancement has significantly enhanced the automation level of the fully mechan-
ized mining face, providing a robust technical framework and valuable reference for advancing the intelligent develop-

ment of coal mining operations.
Key words: top coal caving; coal-gangue recognition; image segmentation; gangue rate; U—Net model
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Fig.1 Large-size iso-scale simulation experimental platform of top coal caving mining
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Fig.2 Simulation experiment process of top coal caving mining
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Table 4 Comparison of experimental results among different models

R M /% My/% My/% MpM FIG A sTh
PSPNet 94.94 95.92 91.12 48.96 278.79 429
SegFormer 96.01 96.06 91.42 68.10 421.32 19.3
DeepLabV3+ 96.03 96.27 92.81 43.58 275.35 28.2
PSANet 96.06 96.31 92.87 59.13 312.08 472
AR 97.29 97.44 95.65 29.64 341.29 41.1

(c) DeepLabV3+

(d) PSANet

TR T
(b) SehFormer

e s
H 5%

A

(e) AT

11 ARIBRR AR

Fig.11 Confusion matrices of different models

1 [ 7] %, FPN—ASPP—-U—Net B FEIEAT EI{R 53 E)5
EA AR K 12a, A PSANet 1
FPN—-ASPP-U—Net [ 4% G5 7¢ 54 Hipg i 47 4351 ok,
MAEE 12b d, B4 FPN-ASPP—U—Net [% 2% i) 43 %1
BB AT G SEBRG L, b P 4 8 T30 P mh A7 AR
AR X T B R AR X, A BB S A
oL, G R AR, A LA A 71, FPN—ASPP—
U-Net M8 FERERT 435I ARG B2 R BEAE:, BA R
st R AR, I 3 1 L

4 RFFEGRFE SR

4.1 SHELEGEZIERE

FE R TR AL 00 Ao i v, AT UK A il J5 A e
AR PR A M R R R R AR (Y B T i, 455 JEPRER
AR Y A AR RS, AR5 H ek 2R G RREAT ]
BARSCR 5

PRIt Hh A AR 7 A R A D, TEIEAE D 5

JECT AR T A A 2, e i N T 2 Ry, ) XU ]
ERE, BRI A R R &, PR AN
RS R ORI G H 5, B A R AR
e, W13 JR, R AR B[R Ry A2 v B B AT 12,
e 14 fs .

R U FE AR, AnIE] 14a—T&] 14c, By x4
BRI RS RN 2 Ak BRI, A f&] 14d—
Pl 14h, FRBAAASIN, BERT 10 256 B R B, FRAEAR
B0, S EON A5 2 AR R TC 2 R 1 DX B S AT A
o ST B AT GRS B ]

SR BRI R A B R AR TR, SR UL 8 3
G 5 OIS A 1 25 55 Ok i 07 1 PO PR gt
FTHGHRAL TR . HE S0 UR T —Fh 5L 1 11438 5
FREYAG T I7H, 1207 12 T 0 S 56 MR AT LK
BRI ((x) 5RAOGE 4, BHARRHERAILL (10).

t(x) = 1 —wmin (min Ic(y)) (10)

yeQ(x) \celrg.b) A€




2732

2025 4E5 50 &

JR P PSPNet SegFormer

DeepLabV3+ PSANet FPN—ASPP—-U—Net

(a) 7> HHAI XL L

R PSPNet SegFormer

PSANet

DeepLabV3+ FPN—ASPP-U—Net

(b) > ENR 0 LE2
B 12 KRB AT AL gE X L

Fig.12 Comparison of different model visualization results

B13 Bl
Fig.13  Preparation dust simulation
s x HEMR AR R AR AR y Z XA BTl
BERIIBLE (x) A FUESS A, ASRLEARR x (7 B AL
JiA LR 2L F W G () R ER y B EEE o
BRI o S5 I AR S OR B R R, — B 0.95, ot
M3 Q(x) R LLAEAR x O RYBEIEE F; {r, g, b} RN
r, g, b GRS 3 ANl ¢ r, g, b TRYHANEE; 1A
JEA 55 KR A R0, —BOhTET5 AL 855 Fif b

AR . oo R AU B R 5 TR 55 11, 15
E2W)
J(x) = _Ix-4 +A (11)

max (#(x),1y)

s JOr) W5 TE 55 UG 1 At S ds S i A
FIABYHEL, #ﬂﬁHXOl
ER A% 5 B AR T B 3 1 SR JBCA) v 1, HE SR
FHEe/INIE A 2 E’J%E‘?l@@ﬁﬁ@%iﬂ@ﬁﬁ%%{
L, 3 BB AFAE DR E RN, 23 5 Ml R AT Rp ik
AR, 520 3 RS B
X 3R TR R, % I 3 A AT O, 4
TR 1B 455 5 B AL 3% S =4l 7k, 430
et FH B A 3R 0B I 1A 1 5 v (B OB 7 11 SR IO 2 g i
I, JFXZ WG TR R RS, 5 TR AL
ﬁ:ﬂ:ﬂiﬁ 18 X, e MHIEC (10) TH A H B A 5
A
Horp AR R IR S P E RO O
I} (x) =min [ min °(y)] (12)

YEH(x) cE(rg.b)



555 4] KA FET UG U-Net BB G AR Y5 UM il SR 2733

Moo
2

(b) %Réa\%ﬁzw%

() ¥ AR H15% (d) B AAEFA 5> £20%

(e) BRI $225% () By AEBI 2 £230%

(g) MRS H35%

(h) K AR5 $040%
Bl 14 ORI AR IR B T AT E 5

Fig.14 Image of coal waste under the influence of

different dust concentrations

L(x) = max [ min, 1°(y)] (13)

yeQ(x) Qelrg.b
A I (x) IR IEDE, L(x) NP EIEDN; ¢(x) MR
AR 2 53 0 H ) B AH R S R e Qo) R
15%15 (7T DE I 7 1 .
A2 S T L

Is(x) = p1Li(x) + (1 = )I(x) (14)

Ao L(x) HEE T B R E L p ORI, —
H 0.3,

MG 25 6 e 2t 5 1) I 38 38 (2 /), 3850 A
TEFR S, 5 MG B o o, Afelt ) v 30T A o 5tk
sk, iHECh

1
I,(x) = m[ills(x)+G(x)X13(x)] (15)

o Loo) Ry A S B S T 25(x) SR R/
B 7 Heug ik vy B 38 1 1515 SCe) BB s G(x) by e
B Hodp G 5 L) iR

[L5-LW]

G(x)=lpe 2 (16)

I;(x) = min (min I°(y)) 17

yeQ(x) ce(r,g,b)

X Q) Jy 15x15 T TR IR UL 5 4, 5 Z M ifs
I RO AR IS4, 2, BROK g il 2l e, Z 8K
il 2R F-2%

AR I 4 BT B ,=2, Z=0.6 B, G401 15 5
SEHF, BRSO . REE A (10) 52X (16) 1A
B T, KT BT B A BT AR AL (11) RpnT 43
g R A RS

JCTTUIREASE LI 50 2o i v, Bt BT 10 32 25 i
7 A AR AR R AN ], SR AR MR RSO R B A BT AS
[F] o RWFFEA Rl v BT (R R T A5 i) TR 5 3 i
AR, FH PG i S 0 R AT L o5 Ab B, BE
BRI PRk R AR T 25 RS IR
X FH YN I AR SO R G 2555 1T e 1) R A T
Mk, BOMNZERILE 15 53% 5,

% 5 SRR RFEE AR IR E T 19 2555 J5 EUR IR
SR F 3 i T RS R RN S . R A
SR, Ry BE RO, RERUHEAT A IR R, 7E
TR AR R R BIAERA AU 63.22% ., FE )R
TRHE R R AR T, ST R S
T 14.81%. 17.79%. 23.62%, FFA3 I HERA 132 43
SRS T 11.73%. 14.50%. 14.86%, K15 225 o i %
BFEETIRIE R, RIS R R L E B LD
AR FA AR AT MR R R
42 BIFGERFRIKEER

TRAT 3B 2 S A 101 8 s o A% O B
UG 53 0T LR 1158 2500 T AR 1O 1 BT iR
AR, O O R R PR S R RK
JRAF R IR AT (Image Gangue Mixed Rate, Rigm) 8
NZE T A T FBCRRE 15150 - 7 S B i AL A 3t
ARF R R (B TR SRR m ALY L, 3
BN

£ % 100% 18
= X
T P.+P, ? (18)

2t P, Sk B TR, s P,y BF (0 B B T
2
m o

N T B RACTIER: Hh 238, BRSO AR AT R4




2734 # %

2025 4E5 50 &

AN

SNV

PSSRk 2B e B X b PR 5

Fig.15 Effect of different dust concentrations on the recognition of coal gangue images

x5 AEMLREINEFEGIRAE R
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