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Production analysis and permeability evolution of fractured horizontal
wells of coalbed methane reservoir
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(1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 2. PetroChina
Huabei Oilfield Company, Rengiu 062552, China)

Abstract: Massive hydraulic fracturing has changed the status of low-productivity and low development efficiency for
coalbed methane (CBM) reservoirs. However, the production dynamics of fractured wells and the permeability evolution
mechanisms in CBM reservoirs are unclear, which significantly limits the efficient development of CBM reservoirs.
Therefore, this study incorporates the total strain evolution under the conditions of gas-adsorption-induced swelling, frac-

ture compression, and unsteady creep, uses the cubic law to establish the permeability model, and obtains the pressure and
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flow fields via the finite volume method (FVM) and the transient embedded discrete fracture model ({tEDFM). Based on
the embedded mass exchange law, an adsorbed-free phase multiple-mechanism recovery calculation framework is estab-
lished to realize production dynamic analysis and productivity calculation. Results show that the production dynamics of
CBM fractured wells include five stages: the initial high production stage, desorption-induced productivity increasing
stage, mid-time stable production stage, production decline stage, and the final depleted stage. The larger the Langmuir
pressure is, the faster sorbed gas production would be. When the Langmuir pressure is 2.6 MPa, after 1 800-day produc-
tion, adsorbed gas dominates production. When the Langmuir volume is increased to 15 m*/t, desorbed gas’s contribution
continuously increases. Adsorbed gas becomes the main gas source after 560-day production. The denser the hydraulic
fractures are, the larger the drainage area is, the significantly higher the initial production would be, and the later the pro-
duction decline occurs. When the fracture spacing is 3 times larger, the maximum gas production decreases by about 48%.
When the fracture half-length is increased by 50 m, the initial production would nearly be doubled. The permeability evol-
ution includes three stages: loss, recovery, and enhancement. When the fracture compressibility coefficient is 0.03 MPa ',
and the loss rate is as high as 76% within 800 days. Despite the loss of permeability due to fracture closure, when the
methane is desorbed and recovered, the reduction of swelling strain causes the permeability to recover. With fracturing in-
tensity increases, and the permeability recovery becomes faster and stronger, which promotes the long-term recovery of
CBM. When the desorption-induced strain is greater than 0.06, the permeability recovers and increases to 1.2 times the ini-
tial level in the later production period. The lower the coal viscoelastic modulus is, the more obvious the permeability

damage caused by creep would be.
Key words: coalbed methane; multiscale seepage; FVM-tEDFM; transient rate exchange; multiple extraction; per-
meability evolution
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Fig.l Multiscale flow conceptual model of fractured horizontal wells in coalbed methane reservoir
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