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Abstract: The effectiveness of coal seam water injection in controlling gas and dust is closely related to the wetting effect
of water on the coal. A dynamic wetting process is formed after the contact between gas-bearing coal and water, which is

crucial for revealing the wetting mechanism of coal seam water injection and the application of coal seam water injection.
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However, the contact dynamic evolution characteristics and microscopic mechanism between gas-bearing coal and water
are still unclear. Based on this, this paper uses the self-developed surface tension analysis software between water and gas,
the contact angle experimental equipment of gas-bearing coal, and the water droplet contour extraction software to study
the contact evolution characteristics between gas-bearing coal and water. The microscopic mechanism of contact evolu-
tion between gas-bearing coal and water is revealed based on molecular dynamics simulation. The results show that the re-
lationship between surface tension and gas pressure satisfies the negative exponential function. The contact angle is a func-
tion of gas pressure and time, which is negatively correlated with time and positively correlated with gas pressure. Under
the same gas pressure condition, with the increase of wetting time, the interface energy of coal and water decreases gradu-
ally, the surface energy of coal increases gradually, and the adhesion work increases gradually. With the increase of gas
pressure, the coal-water interface energy becomes more extensive, the surface energy of coal becomes smaller, the adhe-
sion work becomes smaller, and the difficulty of water spreading on the surface of coal increases. With the increase of
wetting time, the height of the drop of the highest point of the water droplet contour increases gradually, and the contact
surface width between the water droplet and the gas-bearing coal increases gradually. The gas pressure is negatively cor-
related with the height of the drop at the highest point of the water droplet profile and the increase of the contact surface
width between the water droplet and the gas-bearing coal, which is consistent with the contact evolution law between gas-
bearing coal and water obtained from molecular dynamics simulation. The concentration of water molecules appears at a
peak point above the interface between coal and water. At a certain distance above the peak point, the concentration distri-
bution of water molecules increases with the decrease of gas pressure and increases with the increase of gas pressure. For
high gas coal seam, the coal seam permeability improvement measures and water injection measures can be used in com-
bination, and the permeability improvement and drainage gas measures can be taken to reduce the gas pressure of coal
seam before water injection, so as to increase the wetting range and wetting degree. The research results provide some the-
oretical support for revealing the dynamic wetting mechanism of water in gas-bearing coal and the application of coal

seam water injection.
Key words: coal seam water injection; gas pressure; contact dynamic evolution; droplet contour; collaborative treat-
ment of gas and dust
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Fig.3 Water droplet morphology under different gas pressure conditions
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Fig.11 Configuration of coal adsorption gas under different gas pressure conditions
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Fig.12 Molecular structure model of gas-bearing coal and water
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Fig.13 Contact structure model between coal and water molecules under different gas pressure and time conditions
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