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Abstract: Intelligent recognition of coal mine workers and manned vehicles (coal mine pedestrian-vehicles) is an import-
ant component of video surveillance systems and a key task in the development of coal mine intelligence. However, the
detection scene of coal mine pedestrian-vehicles is complex, and deploying large pedestrian-vehicle detection models on
limited computing devices is challenging. Balancing between model detection performance and efficiency poses many
challenges. This paper proposes a lightweight coal mine pedestrian detection model based on deep learning and model
compression techniques. Taking the coal mine video surveillance dataset in Guizhou region as an example. The model ac-
curately and in real-time completes the task of detecting coal mine pedestrian-vehicles, achieving a balance between mod-
el detection performance and efficiency. Specifically, in the network model design phase, a lightweight detection model
named FCW-YOLO is proposed based on YOLOVSs as the baseline. Faster-Block and coordinate attention are integrated
into the feature extraction module of the network, designing a novel C2f-Faster-CA lightweight architecture to reduce re-
dundant channels of the network while adaptively capturing global key information. Furthermore, the WIOU boundary re-
gression loss function is employed to increase the model's focus on common quality samples, addressing issues such as re-
gression errors caused by imbalanced training samples. In the model compression phase, the proposed FCW-YOLO mod-
el undergoes channel-level sparsity through a collaborative pruning algorithm, automatically identifying unimportant chan-
nels and reducing them, resulting in the FCWP-YOLO model, achieving secondary lightweight design of the coal mine
pedestrian-vehicle detection model. Results on a self-built coal mine pedestrian-vehicle detection dataset show that the
proposed model has parameters, computational load, and model size of 2.3 M, 4.0 GFLOPs, and 6.0 MB, respectively,
achieving compression ratios of 4.9 times, 4.7 times, and 4.4 times compared to the baseline model. The average detection
accuracy is 88.7%, an improvement of 1.1%, with a processing speed of only 5.6ms per image. Compared to various light-
weight architectures and advanced detection models, this method demonstrates excellent accuracy, lower computational
costs, and better real-time performance, providing a feasible coal mine pedestrian-vehicle detection method for resource-
constrained coal mine scenarios, meeting the deployment requirements of coal mine video surveillance and enabling real-

time alerts for intelligent inspection of coal mine pedestrian-vehicles.
Key words: coal miners detection; coal manned vehicles detection; deep learning; model compression; lightweight ar-
chitecture
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2 B ANEHESEAE
HE RS N4 (R TN RT3 4 59)(Coal
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DB SRR T BN 4 2B, DY s Ho i 44
Cpmv, & FHHE0 48 i %2 4 -5 KBA165 114 [ 48 W
PERRR LRI, SRR N 1 920x1 080, KA 45
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FESED T RRIM A48 N AP i R 5 S AR DL B 3R
i 2272 5k E Ro H Y Cpmy BB P AL & T4
W TN P ANERBRD 22 e BB (IR 4 45
HARCRMER I NGB A . S0t 4 A0, 430
W TN, AL, BRSO S, TR IRES B
% >R H labelimg A5 3 #4443 51K AR 1 8 miner,
PHRC. HC-m, HC-nom, % 7 : 2 = 1 # L5l B AL X
S MR (1590 5K), B E4E (454 5K ) A i 4
(228 5K, HA IR IEAE F T RIRL A TEAL, 34 FH T
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Table 1 Division and distribution of coal mine

pedestrian-vehicle dataset

eSSl FRTE I1E: T SO a1 SO SO
By TA miner 2700 812 372 3884
TN PHRC 344 76 46 466
L HC-m 816 228 136 1180
THNWHEE HC-nom 724 232 112 1068
&it 4584 1348 666 6 598

3 KWELER

3.1 SCIRIRES RiF(EISER

ARSC AR TR 1 3 2 R 0 P a2
2 ik . PR AR ST R 640%640, YIZREE A 200,
HUHN 32, 22 %% 0.001, Piibgs y Adamw, 7EH e
20 MR P B FE TR LIIE VI 2R R o [l
KT 12)y—X (15) WF8FR LATEAf AR R (0 4G 000 4
Ao Ioh, —Sbil FHAR AR W 45 2500, T A
R INGI T A 2 P 2% 0 23 B B ) 1) e ] T
SRR ARG I R, RSN b B g e L A FH BT
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Table 2 Experimental Environment Configuration

fic EAS B
CPUx2 Intel Xeon 8275CL
T GPU NVIDIA RTX A6000(48G)
RAMx8 32G 3200 DDR4 RECC(256G)
Python 39
A Pytorch 2.0
Cuda 11.8

P =TP/(TP +FP)
R =TP/(TP+FN)

AP = fol P(RYA(R)

mAP:ZN:AP,-/N

(12)
(13)
(14)

(15)

o PRSI, T PRI R IEREA (A% 5 R
A3 L, DT ARG 00 AT T 15 0, SR R A AR
T R B AP S F- YR, 02 P-R IR N A TH R,
FORERILEAR R A [0 - BRE02%; mAP R 7
R RESE, it T RRLAE 22 i - E RS
JELEA TR AR ALK I RE 10 B B8 A, AR SCEER T
10U [H {8 H 0.5 i i145 AP } mAP; TP, EN Fl FP 43
) Sk TG AE | U RS HE R R AGAE SR H 5 N oA ARSI 2 )
3.2 FCW-YOLO ZI§ 4 #f

SR BE T B e AR A AT R, Ko LR AR T
J'& T 3% 3 TN 1T S, AR R 1 Sk B 2R AR AR
(YOLOVSs), 1 5 20— 71 8 Sy phe i A B A [] 1) HE 571
HE S8, B R A Faster-Block X 34 46 it it )5
(BTRY 1), BT AT 2% BE PR AR MR ALK, (7] A G IS I
VA B ARG o E B R FH T A X SR 2 i
Je (R 2), MR AT 2 B R AR (SO e /P HE i, (RS RS
AR L., #F—20 CA A 3 Faster-Block H
Xof L2 P S A5 R 5, b AR 0 4 2 i A 1 [
I, AP BE AL AR B T A SR T ARAEATAL 4 S5,
K WIOU #14 sRE It I, ASER i ARG A B B A7
K%, & i Faster-Block Bc s} WIOU J5 (154! 5),
BRI B i — 25 4R T, IF B infe ik 3@
TR 7 RIBAY 8 AN L & B, AR 7 X T A
SV PRSI 85 Ay 90 Tl S 30 v B s, {FLSP-SADH B 3 (4D
ANUIARHY 8, BT 5 7 B R FH Faster-Block A
BAMMERIMG, (AELE T CA R WIOU BB
E#JaE, CA —EREE 7R 4M T Faster-Block H#i53 451
ol AR BB R, (HAS4E  AARA 8 B ER
N R HET, IERR T Faster-Block 78354 {d FH I A Y
REIE NG I BEAA REAT SRR 45 T8 . A, AR 4
Y 4.6,7,8 Z5FXT LT, WIOU [ 5] A XS5 A4
JEE RN A BRI (B] P A S, [ S A EEgl A AR AR T
R I REAR AR 2 T HETE o [ 9 Jhy LR A AL el g A
AU A 3 26 X L, R WIOU etk 5, A5 A Ay
PRAAG NS TP, T2l Il i 25 IR

ARSCEE R BRI S5 8.3 M, TR 22.0
GFLOPs, #iIK/ Ny 16.1 MB, X [ BELR AR, 43Il
T 25.9%, 22.5%, 24.8% . ARG 3 I Al L g6 45 1
A 10 SRS P-R B XT b, i f5 P-R ik 3k
PR, B0 TN, P8 AL, MR TN
(A BE SR AR TE T 3.0%, 3.4%, 2.5%, 1.7%, afdAs i
PETET 2.6%, X ULH T EEF 4 i R A B, fE
N ZER AT 55 o BER A AR BRI E 7 H bk o TR
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Table 3 Ablation Experiments
GleligtoN PRI 2 BE VAL b PERURG 1 AT T bR PR B PP b
sl SRR/ B/ BRI
Faster-Block CA WIOU B/ HE RN AP ine/% APpyrc/% APyc/% APycnom/% mAP/% HEFRT E]/ms
M GFLOPs  MB
1(3:k) 112 28.4 214 91.5 95.1 83.2 80.6 87.6 6.4
2 N 8.2 214 16.0 92.7 923 84.9 79.2 87.3 6.9
3 v 113 28.6 21.6 92.9 96.9 81.3 82.1 88.3 8.3
4 N 112 28.4 214 93.1 94.4 86.1 81.1 88.7 6.4
5 N Y 8.3 22.0 16.1 93.5 95.7 82.8 83.7 88.9 9.8
6 \ y 8.2 214 16.0 93.7 95.6 84.9 83.1 88.8 6.9
N \/ 113 28.6 21.6 96.1 95.2 84.9 81.9 89.6 8.3
J J 8.3 22.0 16.1 94.5 98.5 85.7 82.3 90.2 os
AL (-25.9%) (-22.5%) (-24.8%) (+3.0%) (+3.4%) (+2.5%) (+1.7%) (+2.6%) ’
4.0 F 1.0
—— H4% (CI0U)
3540 — gk (WIOU)
0.8
5 06
&
i
04— AP, 91.5%
—— APpc: 95.1%
02 F —— APy 83.2%
—— APy pom: 80.6%
ol — mAP: 87.6%
0 50 100 150 200 0 0.2 0.4 0.6 0.8 1.0
IR A%
N ‘ (a) FELRHLRIP-R 1T 28
E 9 AR s A 2t
Fig.9 Comparison of boundary regression loss function curves Lo —
T SRS s G 0 44 55 YR R4, ARy 05l
FEU7R) 2 PR e, e B (I B 2 A5, 285 1Y 7
PEAEFRTE] A 9.8 ms, BARHLIEL T 3.2 ms, (BASSR s 06T
&
SEART 30 ms PSP AGINEER . 25 |, TH Rl S g A5 R Z 0.1
A —— AP, 91.5%
B, AL X IR B B 4 VRS S A s 10,
s, I B A B R B, T 02 — AP B2%
BCHE, AT T4 P A5 280 RSO AL, KPR, ki oL — map$7.6%
Z 5 w7 IS E <I) o!z o!4 0!6 0!8 1!0
[l

33 BEBEEWRSH

F 4 45T RHE I FCW-YOLO Ao 4 75 i
TEAE BT B i) SC 0 B, B BTAS S A2 S FCWP-
YOLO. FRByA:RAN, HAHES BRI X420 T4
N AETE 0.1~0.9 i [ A 3% AR LA U 2 1 25
Gk RE R A e DL BT A3, LR I R JLP A
KEEEILT, SR A R AR
3.3.1 eI ZRpr B

€ 11 A Tensor-board 1] M4k 4 5 i A9 FCW-
YOLO Fisi I 25t B9 BN JZ 1838 R - p 434 Xt
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Fig.10 P-R Curve Comparison Before and After Improvement
. FCW-YOLO A #igi I 2kt (1] 11a), B p 5
R, ACE D y (BT 0, BALTCEARE y K
NG A Ry T, TR AT T — AP B R R
FCW-YOLO #igi I ZkJa (&l 11b), y I IE 541 B
HHEREA R T 0, AV ISR, JF HES 9 4
AT AZACA T, B RR B I 2k BAR e IR, s B mf
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Table 4 Experimental hyperparameters of FCW-YOLO in

channel pruning stage

S BY B HSH i
23R 0.001
HER KN 32
Frgiil e
TR F (1) 1074
IR 200
EIE5 Fip Sy [0.1,0.9]
e 5l Rk Bt—3

0
50
=
4100 5:%
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200
02 06 10 14 18 22 26 3.0
IR Ty
(a) RMBRINZR Ty 53 A
10
450
1100 35
4150
= L L L L L 200
0.2 0.6 1.0 1.4 1.8 22
SR Ty

(b) B 465 5

11 FCW-YOLO #ERIsi YIZRATIA Y y 704
Fig.11 Distribution of y before and after sparse training of FCW-
YOLO model

HRAE BT RAE By N YA .
3.3.2 SRR

FE BB RE B B, XA R BT A% ([0.1-0.9]) 19
FCW-YOLO #RY AT T 5000, WAL 45 R 3% 5, 3% 5
H mAP 2 i SR S B R IS FE . BEE BTA R
PRGN, AR S8 TEO | AR R BRI B ]
AW R, SR, BERLY mAP B BT R R ARG IAS
Witk 3, FEIE BT RN 0.4 B mAP A B fe i . B 5T R
0.7 BF, X F A 18 5T A9 FCW-YOLO #5 8, mAP
1 88.7%, TEANHR I 1.5% ¥& L GO T BRI FFAS K
R FAEARE, FE B[] 4 5.6 ms. [HFEME BT k5] 0.8
PUR , SR R BE SR T R . BYRR R 0.9 i, A5

Y 4 S50 e U, AR 51 2K o 2 G Ik RE , A BE AL
32.6%. I, FCW-YOLO #5571 %) 5 A% % 3% & Ry 0.7
wHREIE.

K5 AETIHEET FCW-YOLO HEIFHEEEFEFR
Table 5 Performance metrics of FCW-YOLO model at

different pruning rates

Sk S TR BIRN mAP/ AR

GFLOPs MB % ms

0 83 22.0 16.1 90.2 9.8
0.1 73 18.9 14.3 89.6 8.6
0.2 6.2 16.3 122 88.5 8.1
03 55 14.1 10.9 89.7 7.9
0.4 45 11.7 8.7 91.4 7.2
0.5 3.7 9.6 7.4 90.1 6.8
0.6 32 82 6.4 89.6 6.1
0.7 2.3 6.0 4.9 88.7 5.6
0.8 1.6 42 3.6 76.7 5.4
0.9 0.8 2.1 2.3 32.6 4.6

TE: BIBCR O R BA AT BB A FCW-YOLORERL

K 12 35k 0.7 iF FCW-YOLO # A 8 A% {iy
J5 45 P 48 JZ T TE RO L . BYAS R, 45 238 1 B0 KR
L, EHE 18~62 JZ2 11 M 45 8 18 15 2 K iR A& 89, [
AT LA 0 286 2 B50ER I ) T 4%, 16 B BL ] st oK
UL T 2% R ECRIR I 2 A T R T4 lE
0, I BB 11 781 /b2 T 3 443, 8 38 sk
HEBIh 70.1%, 3% 515 B I BT AL LU AR — 3, X 3R
BT 38 B A A FRAT R AR AL R g, O AL
X LA AS 45 A5 ARSI 1 B, 1225 vk BE W6 A s i Ak
FCW-YOLO P48 45#, SEIUBIAY R 45, Bk T 3 A8
s IR R

36 45 T BLER S L B B RS TR 4 Y B
REXT LI Rl o X L Fk2R, 24 158311 FCW-YOLO
JEILT L RIPE BE, D T ISR, (A
SR TR . AETE 1 B AL B B, BT R A KR
RREAR, b T 70 T 235 4 %) i % () i 2 et —
FE TRk (RE R DU, AR ARSI BE L
W B T AT Z T, BARSCORNRE T 1.5% MK
DUDAS J3E S0 0, EHOAG I B AT SR A 3848, JF AL
P B P A LY SRR T, BUR A B T R R 4 ELAS
D REDL S8 N Gl 45, B FCWP-YOLO, &
R, XF LR, 2B 48 A S8, TH =
BRI KNI R 46 L R 8 T 4.9, 4.7, 4.4 1%, 40
ROR A T % B 52 B 9 FCW-YOLO, K IS FE
88.7%, HEIN T 1.1%, HEBLEEUN 5.6 ms. X J& HAET
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Fig.12 Comparison of channel numbers before and after pruning FCW-YOLO
F 6 HESUUHMRMERELRMREREXTLE,
Table 6 Performance Comparison between Baseline, Improvement, and Model Compression Stages
Bt iy SHE/M RS HHER/GFLOPs  JE4EEE #IRKVMB R4ELE mAP/% JEFEET E]/ms
B YOLOVSs 11.2 / 28.4 / 21.4 / 87.6 6.4
BEYAHE  FCw-YOLO* 8.3 1.4% 22.0 1.3x 16.1 13x  90.2(+2.6%) 9.8
BIRL FCWP-YOLO* 23 4.9% 6.0 4.7% 4.9 44x  80.5(-7.1%) 5.6
Tl FCWP-YOLO* 2.3 4.9x 6.0 4.7% 4.9 4.4x 88.7(+1.1%) 5.6

TE: AP RO BRI N ASCIR I A T3, AR LI D B2k I 50T -5 B0t I ) R 28 T LU

Bt 25 J0E A B RRCR, Bk T8 3R kiR
AL BT

4 it i
4.1 B=HMEITLE

R M R AR RE A RO D BB SR AR
AP, XA HG— SRR N F TR BRI &
XUAESR 7 b, SR T 2 S i i s T R 45
HHEXS YOLOvSs M4 2EAT 1 i, X A4 ShuffleN-
etV2[26], MobileNetV3—s[27], EfﬁcientNet—lite0[28], Slim-
neck ™, X LLHE I 4% T X B AR T ) FCWP-
YOLO A fE . Horb, S80 | T A
RN, BRI [R] B N ; mAP BB . X HERRZ,
A G I 2 110 R H (A5 IO 28 I B #1045 2 T A ] R

(R LAk, ARSI 3 R AR b HI AN — 2. ShuffleNetV2 Fil
EfficientNet-lite0 % #fE 2 i [H] 38 L T, MobileNetV3-s
F1 Slim-neck JFEFR I [A] 038 A0 1, X R T2 40
25 (10 AR FHLAST () 2 A 5 ) 1Y), {H AN J2& E G
o A, REBEFMEA R TR A,
{H ShuffleNetV2 F1 MobileNetV3-s ¥l 4 RE R 42,
TR DUIHE T A A B R 528, JF B e T m 5
ERBEWEAWMRATER B AR, EfficientNet-
liteO FziNHRG B 2 5 T LR Y, (R AR Iz 5 T 3R
M vk o X R T 5 i 90 W 2% 1) 2 i X T
YOLOV8s MR/ AT BRI, 28 FHE5 R AR
AN T BY A T R IR S R . SR, FRATTAY T
FCWP-YOLO % J& T i 5 A0, 1 BB, ik
PREL, WIEIE B AR 2 IR R, TR AR AR 2] T IE

xRT1 BEZNEITLLER
Table 7 Comparative experiment of lightweight networks

LRI ZHI/M HHTE/GFLOPs BUA/VMB mAP/% HfEFRY H)/ms

YOLOV8-s(H:4k) 11.2 28.4 214 87.6 6.4
ShuffleNetV2 6.1(—45.5%) 15.9(—44.0%) 11.9(—44.4%) 82.3(—5.3%) 5.1(—20.3%)
MobileNetV3-s 6.5(—42.0%) 16.3(—42.6%) 12.8(—40.2%) 84.3(-3.3%) 6.7(+4.7%)
EfficientNet-LO 9.3(—17.0%) 22.0(—22.5%) 18.1(—15.5%) 87.9(+0.3%) 5.7(-10.9%)
Slim-neck 10.5(-6.2%) 25.6(—9.9%) 20.4(—4.7%) 87.1(—0.5%) 6.9(+7.8%)
FCWP-YOLO(Ours) 2.3(=79.5%) 6.0(—78.9%) 4.9(-77.1%) 88.7(+1.1%) 5.6(—12.5%)

TE: RIS AL R R A R E AL
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SRS 2k AL, HR HR B) FCWP-YOLO
B 5 224~ 20 B SE R U 28254 T T X HL S5, A4

WIBT By Faster-RCNN! —[rBefy SSDP!, YOLOV3-
tiny®”, YOLOv5", YOLO6", YOLOv8™, 4t T
Transformer 22441 DETR!® | Deformable-DETRPV%%
AR S 56 1 — Bk, SR FH AR ) 0 S 96 2158, 508 45
S50k g . Hrh ik H1Y Faster-RCNN, DETR Fl
Deformable-DETR 3 T R 4434k Resnet50, SSD £+
W25k VGG16, Z5FUNEE 8 FiR.

RS IS L L

Table 8 Comparative Experiment of Mainstream Detection Networks

R ZHRIM H48H#/GFLOPs HiEIF/NMB mAP/% HEBE ] /ms
YOLOVS-s(34%) 11.2 28.4 21.4 87.6 6.4
Faster-RCNN 40.6(+262.5%) 208.4(+633.8%) 320.4(+1 397.2%) 74.5(-13.1%) 52.3(+717.2%)
SSD 23.8(+112.5%) 30.3(+6.7%) 183.8(+758.9%) 79.6(—8.0%) 18.9(+195.3%)
YOLOV3-tiny 103.6(+825.0%) 282.2(+893.7%) 207.8(+871.0%) 85.6(—2.0%) 7.9(+23.4%)
YOLOVS-s 9.1(-18.8%) 23.8(-16.2%) 17.4(-18.7%) 87.7(+0.1%) 6.0(—6.3%)
YOLOV6-n 4.2(~62.5%) 11.8(-58.5%) 8.3(61.2%) 84.2(-3.4%) 6.5(+1.6%)
YOLOV8-x 68.1(+508.0%) 258.1(+808.8%) 274.9(+1 184.6%) 89.8(+2.2%) 12.3(+92.2%)
DETR 41.5(+270.5%) 94.9(+234.2%) 477.2(+2 129.9%) 83.6(—4.0%) 78.1(+1 120.3%)
Deformable-DETR 40.1(+258.0%) 190.0(+569.0%) 400.7(+1 772.4%) 84.9(-2.7%) 57.1(+792.2%)
FCWP-YOLO(Ours) 2.3(-79.5%) 6.0(—78.9%) 4.9(-77.1%) 88.7(+1.1%) 5.6(—12.5%)

TE: RPN REE R A LA T IEM L . A FEPRAIEE 43 L3N O LU B RS R SR bR AR

HR AR [ e S 25 S n] 0, PR B B 1) 8.3 Faster-
RCNN A W PR REH 2, T HL I 28 10 JF 4 4K,
e P 5005, DI T I A R B B A LA 3
W2 25 N ER AT 55 . JETF Transformer 2244
Ui 513 (1) DETR ASH 5 AN ARG B AR, AT AR
WA, P B R Bir A3 6 LU AU 2 18, JR A4S De-
formable-DETR it A &L 4 A% T DETR HAGH
PERE, [EAST AL FRURN 4 2 B2 AT SR 008, ARG 2
AR SCSERF R EL SR (30 ms), DL Transformer “h 2244 Y
I T I 4 4 R B AR B AT L3, (1
FEAIE A S /N 4, A A 2 L
PR A I 2% B S AR AOE N, AT R i K, AN 2
PATRAR B A SE IR . 7 S0 ) B B B D B vk
H, SSD ARG INHS JEE R B IR A, AR 79.6%, A HE H:Ath
PARYBEAE LA A X 2%, SSD BRI B Sl B 4%, K
IR B GR R T SCHH RN EEKR, (B4 YOLO #51,
KZ YOLO F 41 (1) 5 i 46 i 55092 o kG B i AR 7E
85% LAt I ELAGIN 3 R e, {ERE LA S LA 0 47
AEFTREIM AR -7 . U1 YOLOvV6n F8 W28 45 R i,
EURS I P B 2 A W KAL) x R 41, YOLOv8x
AR INHS 2 A R b S 5 v e e 1), (LI 28 158 AR AT
SRI X TR IR AZ BRI S 500 3, F 8 X R

KAAUTIRAFAER K o BRI, FRATH I 2% 45155 A
AR A AR, TR ARG it ah 2 T Sk Bk, AN
T YOLOvSx, {H# H A R S 80, T A AR R
TEZE /N T YOLOVSx, #E PR BE by die b, TEBH T 3841
P AR AR N 4R IAT 55 i fb . SRR AN v A
PET5 T A P

P13 JB/R T 045 R R B AR R AR [ Y
FET N ZE R R A T i A B T AL, L A 13a R
Fem g SR ML D8, (S T AZE5;
13b AL 13¢ 43402 3 -0 (R MR g 3, 40
B TN A G- 2851); 1B 13d IREFK R 5 5,
A TS [ 13e VR ALk R, U
B T 1B 131 FEl 13g AR VL5, &
T TN AR TCE NI 130 4R
T h B =, AUH B, RYEE 13 K
25 5 0] %1, Faster-RCNN 7E & 13a H %88 375 H #E
JURHEIN G, 76 8] 13b ThalEfhid st thBe O AN HEIL S ;
YOLOV3-tiny 7/ 13a F1E 13b HAUH BLE M ASHE,
WH BT IR A BLG, 26 13c PRI Mgt B
TOUARHEIN G ; SSD (16 e B4 25, 7E 18 13f, &
13g FIE 13h S8 AR P I 5080 L T I IR G IS
Gy ENTAEANHEIR G, [RIIE & 13(f) Hhadods 2 A 4
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Fig.13  Detection visualization of mainstream models and proposed models
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