
 

基于深度学习和模型压缩技术的轻量级
煤矿人车检测模型

−以贵州地区煤矿为例

解北京1 ， 李　恒1 ， 栾　铮1 ， 雷　振2 ， 李晓旭1 ， 李　卓3

(1. 中国矿业大学 (北京) 应急管理与安全工程学院, 北京　100083；2. 贵州理工学院 矿业工程学院, 贵州 贵阳　550003；

3. 北京工业大学 城市建设学部, 北京　100124)

摘　要：煤矿工人和载人车辆 (煤矿人车) 的智能识别是视频监控系统的重要组成部分，也是煤矿智

能化发展的关键任务。然而，煤矿人车检测场景较为复杂，大型人车检测模型部署在有限的计算

设备上难以实现，如何在模型检测性能和检测效率之间取得平衡存在诸多挑战。以贵州地区煤矿

视频监控数据集为例，提出了一种基于深度学习和模型压缩技术的轻量级煤矿人车检测模型，该

模型精准实时的完成了煤矿人车检测任务，对网络进行瘦身的同时几乎没有损失检测性能。具体

来说，在网络模型设计阶段，以 YOLOv8s 为基线提出了一种名为 FCW-YOLO 的煤矿人车轻量级

检测模型，首先将 Faster-Block 和坐标注意力和开发到网络的特征提取模块中，设计了一种新颖

的 C2f-Faster-CA 轻量级架构，旨在减少网络的冗余通道同时自适应捕捉全局关键信息；其次，采

用了 WIOU 边界回归损失函数以增加模型对普通质量样本的关注，降低了训练样本不平衡带来的

回归误差等问题。在模型压缩阶段，联动剪枝算法对提出的 FCW-YOLO 模型进行通道级别的稀

疏，模型可自动识别不重要的通道并对其进行删减，实现了煤矿人车检测模型二次轻量化设计

FCWP-YOLO。在自建的煤矿人车检测数据集上的结果表明，提出的模型参数量，计算量和模型

大小分别为 2.3 M，4.0 GFLOPs，6.0 MB，对比基线模型分别实现了 4.9、4.7、4.4 倍的压缩效果，

平均检测精度为 88.7%，提高了 1.1%，每张图像的处理速度仅为 5.6 ms。对比多种轻量级架构和

先进的检测模型，该方法精度表现优异，计算成本更低，实时性能更好，为资源受限的煤矿场景

提供了一种可行的煤矿人车检测方法，满足煤矿视频监控部署要求，可为煤矿人车智能巡检任务

提供实时预警。

关键词：煤矿工人检测；煤矿载人车辆检测；深度学习；模型压缩；轻量级架构

中图分类号：TD82；TP18；TP391　　文献标志码：A　　文章编号：0253−9993(2025)02−1383−16

Lightweight coal miners and manned vehicles detection model based on deep
learning and model compression techniques: A case study of coal mines in

Guizhou region

XIE Beijing1, LI Heng1, LUAN Zheng1, LEI Zhen2, LI Xiaoxu1, LI Zhuo3
 

收稿日期：2024−07−21　　策划编辑：郭晓炜　　责任编辑：宫在芹　　DOI：10.13225/j.cnki.jccs.2024.0459
基金项目：国家重点研发计划资助项目 (2022YFC2904100，2023YFC3011300)；中央高校基本科研业务费专项资金

资助项目 (2023ZKPYAQ04)
作者简介：解北京 (1984—)，男，安徽滁州人，副教授，博士，Email：bjxie1984@163.com
通讯作者：李　恒 (1997—)，男，贵州盘州人，博士研究生，Email：18084282133@163.com
引用格式：解北京，李恒，栾铮，等. 基于深度学习和模型压缩技术的轻量级煤矿人车检测模型−以贵州地区煤矿

为例[J]. 煤炭学报，2025，50(2)：1383−1398.
XIE Beijing，LI Heng，LUAN Zheng， et  al.  Lightweight  coal  miners  and  manned  vehicles  detection  model
based on deep learning and model compression techniques: A case study of coal mines in Guizhou region[J].
Journal of China Coal Society，2025，50(2)：1383−1398. 

第 50 卷第 2 期 煤　　炭　　学　　报 Vol. 50　No. 2

2025 年　  2 月 JOURNAL OF CHINA COAL SOCIETY Feb.　　 2025

https://doi.org/10.13225/j.cnki.jccs.2024.0459
mailto:bjxie1984@163.com
mailto:18084282133@163.com


(1. School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing　100083, China; 2. Guizhou In-

stitute of Technology, College of Mining Engineering, Guiyang　550003, China; 3. Faculty of Architecture, Civil and Transportation Engineering, Beijing

University of Technology, Beijing　100124, China)

Abstract: Intelligent recognition of coal mine workers and manned vehicles (coal mine pedestrian-vehicles) is an import-
ant component of video surveillance systems and a key task in the development of coal mine intelligence. However, the
detection scene of coal mine pedestrian-vehicles is complex, and deploying large pedestrian-vehicle detection models on
limited  computing  devices  is  challenging.  Balancing  between  model  detection  performance  and  efficiency  poses  many
challenges.  This  paper  proposes  a  lightweight  coal  mine  pedestrian  detection  model  based  on  deep  learning  and  model
compression techniques. Taking the coal mine video surveillance dataset in Guizhou region as an example. The model ac-
curately and in real-time completes the task of detecting coal mine pedestrian-vehicles, achieving a balance between mod-
el detection performance and efficiency. Specifically,  in the network model design phase,  a lightweight detection model
named FCW-YOLO is proposed based on YOLOv8s as the baseline. Faster-Block and coordinate attention are integrated
into the feature extraction module of the network, designing a novel C2f-Faster-CA lightweight architecture to reduce re-
dundant channels of the network while adaptively capturing global key information. Furthermore, the WIOU boundary re-
gression loss function is employed to increase the model's focus on common quality samples, addressing issues such as re-
gression errors caused by imbalanced training samples. In the model compression phase, the proposed FCW-YOLO mod-
el undergoes channel-level sparsity through a collaborative pruning algorithm, automatically identifying unimportant chan-
nels  and reducing them,  resulting in  the  FCWP-YOLO model,  achieving secondary lightweight  design of  the  coal  mine
pedestrian-vehicle  detection  model.  Results  on  a  self-built  coal  mine  pedestrian-vehicle  detection  dataset  show  that  the
proposed  model  has  parameters,  computational  load,  and  model  size  of  2.3  M,  4.0  GFLOPs,  and  6.0  MB,  respectively,
achieving compression ratios of 4.9 times, 4.7 times, and 4.4 times compared to the baseline model. The average detection
accuracy is 88.7%, an improvement of 1.1%, with a processing speed of only 5.6ms per image. Compared to various light-
weight  architectures  and  advanced  detection  models,  this  method  demonstrates  excellent  accuracy,  lower  computational
costs, and better real-time performance, providing a feasible coal mine pedestrian-vehicle detection method for resource-
constrained coal mine scenarios, meeting the deployment requirements of coal mine video surveillance and enabling real-
time alerts for intelligent inspection of coal mine pedestrian-vehicles.
Key words: coal miners detection；coal manned vehicles detection；deep learning；model compression；lightweight ar-
chitecture
  

0　引　　言

煤矿作为我国主体能源产业，目前正处于机械化

过渡到智能化的关键时期[1-2]。《煤矿智能化建设指

南》[3-6]指出，要以人为本，坚持把减人、增安和提效作

为智能化煤矿建设的根本目标，重点突破智能主辅运

输和智能安全监控系列的关键技术和装备。煤矿工

人和载人运输车辆 (煤矿人车)是煤炭开采的前提与

基础，在推动经济发展的同时也面临着诸多安全隐患，

其智能化管理程度决定了煤矿安全高效生产效率。

煤矿人车检测技术作为视频监控系统的重要组成部

分，可为煤矿工人事故的发生和载人运输车辆跑偏提

供实时预警，对于提高煤矿安全管理水平具有重要意

义。然而，传统的基于人工的和机器学习算法在煤矿

行人检测中存在一系列问题。人工检测存在主观性

强、工作效率低下等缺点；传统机器学习算法在复杂

环境下的准确率和鲁棒性有限。这些挑战制约了煤

矿监控预警水平的提升，也增加了煤矿事故发生的风

险，亟需开展新一代信息技术的煤矿人车智能检测研

究。

目前基于深度学习技术主流的物体检测算法主

要有 3个类别：第一是以 Faster-RCNN[7]为代表的两

阶段检测算法。第二是以 DETR[8]为代表的基于

Transformer架构的序列建模检测算法。第三是以

SSD[9],YOLO系列[10-15]为代表的一阶段检测算法。然

而，两阶段检测算法和基于 Transformer架构的检测

算法检测精度高，仍然无法避免计算成本大速度慢等

缺点，难以实际应用于煤矿场景。相反，一阶段的

YOLO系列检测算法因其实现了检测速度和检测精

度的平衡，在煤矿行人和运输车辆检测模型开发过程

中受到了更多研究人员的关注。张明臻等[16]将含有

残差块的 Dense开发到 YOLOv3中，避免了训练过程
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中梯度消失的影响，有效降低了行人目标的漏检率，

提升了煤矿行人检测性能。邵小强等[17]采用了 Mo-
bileOne和 RepVGG结合的轻量级骨干架构，并在

YOLOv7网络的末端引入具有通道注意力的交叉垂

直注意力模块以增强检测性能，获得了 83.1% 的平均

精度和 12.6 ms图像处理速度。徐志等[18]提出了一种

由深度可分离卷积和下采样逆残差块组成的骨干，并

开发到 YOLOv3中 ，实现了 0.767的检测精度和

4.6 ms的处理速度，模型大小为 16.1 MB。江帆等[19]

针对井工煤矿辅助运输车辆的通行性评估问题，采用

传统机器学习支持向量机分类模型结合 HOG和

LBP特征构建了煤矿行人检测算法，实现了 82.1% 的

检测精度。

以上研究人员通过一系列的改进策略提高了煤

矿行人检测精度，降低了模型的计算成本。但对于轻

量级的煤矿人车检测任务仍存在以下几点不足：① 煤
矿人车的智能检测能有效提升巡检效率和实现减人

增安。然而，目前的研究仅局限于煤矿行人单类别检

测任务，开展煤矿人车多类别智能检测技术的相关研

究鲜见，并且针对轻量级的煤矿检测任务研究也较少；

② 一些研究人员都以轻量级网络替换为思路以开发

计算成本低的 YOLO系列检测模型，虽然处理速度有

所降低，模型体积仍然较大，其轻量级表现性能仍然

有限。并且一些研究人员是以牺牲过多精度为代价

实现轻量级的煤矿行人检测，例如徐志等的研究中模

型的图像处理速度非常快为 4.6 ms,但检测精度较低

仅为 76.7%，同时牺牲了 5.7% 的精度；③ 最重要的局

限是，大多物体检测网络中，都存在过参数化的不利

影响，即网络的计算成本远超于待解决问题所需的最

小计算成本，以致生成冗余权重及网络层，这是替换

网络结构无法解决的问题。在计算资源受限的煤矿

场景，这给模型部署在煤矿视频监控系统里带来诸多

不利影响。近年来，研究人员[20-21]提出了模型修剪技

术以解决过参数化问题，旨在几乎不以损失精度为代

价最大程度的压缩模型，但是目前还没有相关的研究

将模型剪枝技术开发到煤矿人车检测模型中。因此

为应对煤矿实际条件的复杂性和有限的计算设备，亟

需开发一种高精度，轻量，实时的煤矿人车检测方法。

鉴于此，笔者以煤矿工人，平巷人车，煤矿架空乘

人装置为代表构建了 4个类别的煤矿人车检测数据

集，以实时性，模型体积，集成度等方面表现出色的

YOLOv8s[22]为基线，设计了一种轻量级架构融合坐标

注意力的特征提取模块，采用边界回归误差更低的损

失函数以增加模型检测性能，提出了一种轻量级的煤

矿人车检测模型 FCW-YOLO。进一步结合通道修剪

方法对 FCW-YOLO模型进行压缩，减少模型的冗余

通道，得到几乎不损精度的低成本模型，命名为

FCWP-YOLO。本文工作是首次尝试将其应用于煤矿

人车检测领域，该方法在轻量级，实时性方面表现优

异，检测性能达到了先进的水平，可满足煤矿视频监

控及井下机器人实际部署的需求，为复杂条件和计算

资源受限的煤矿场景提供了高效实时的人车检测方

法。 

1　轻量级煤矿人车检测模型构建

在煤矿人车检测任务中，实际输入为视频流，通

过将视频切分为一帧一帧的图像以实现等价训练的

目的。然而对于视频流输入而言，所需底层算法的要

求较高，不仅需要考虑检测精度，还需较低延迟和较

小体积的模型才能保证视频流的煤矿人车实时检测，

同时实际应用中还需考虑系统集成和部署兼容问题。

据此，笔者选取了合理的网络模型、设计了高效的轻

量化架构、选择了兼容性较好的模型压缩技术，该方

法充分考虑实际应用场景的要求，提高了工程应用的

可靠性。以上具体措施将在下节展开详细说明。同

时，图 1给出了设计的轻量级人车检测模型实现思路，

主要包括煤矿人车图像采集及前处理、轻量级煤矿人

车检测模型设计 (FCW-YOLO)、采用通道剪枝对

FCW-YOLO进行二次轻量化设计。

煤矿人车图像采集及前处理：采用井下防爆摄像

头获取视频信息，利用调度室的视频数据将其切分为

图片，对采集到的图片进行 YOLO格式标注，划分数

据集，为检测任务提供夯实的数据支持。

基线选取：本文的工作是以 YOLOv8检测器为基

础开展，YOLOv8是目前 YOLO系列最新的先进检测

器，相较以往系列，主要引进了 C2f模块，解耦头，无

锚点检测等。C2f模块的分离操作使得特征信息的交

换更为丰富，解耦头将目标位置和类别信息分离使得

目标定位更加准确，且无锚框的设计不需要采用聚类

等额外操作对锚框进行聚类，省去了中间操作，模型

集成度更好，更适合边缘设备的部署。YOLOv8s是
YOLOv8中计算开销较小的模型，模型复杂度较低，

推理速度较快，且检测精度也有着较好表现，本文旨

在设计极具轻量化、用于未来能够实际部署于煤矿场

景的人车检测器，因此我们选择了 YOLOv8s作为本

文工作的基线模型。

轻量级煤矿人车检测模型设计：在煤矿人车特征

提取过程中，不同通道的特征具有较高相似性以致特

征的重复提取，增加了网络计算成本，据此笔者将轻

量级架构 (Faster-Block)开发到基线模型中以降低网
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络开销；同时，煤矿开采环境存在大量的背景噪声，煤

矿人车关键特征的提取存在挑战，故引入坐标注意力

模块以降低噪声干扰同时增强煤矿人车关键特征的

提取；另一方面煤矿人车检测任务中，光照不均匀、遮

挡等挑战产生了较多低质量样本，数据集中的高质量

样本容易主导训练过程的梯度，导致了低质量样本的

拟合有限，从而使训练产生较大的回归误差，故引入

WIOU损失函数以进一步增强模型检测性能。总体

而言，笔者综合了轻量级架构 (Faster-Block)和轻量级

注意力 (CA) 2个模块的各自优势，并将其引入 C2f模
块中，设计了一种新型的特征提取模块 C2f-Faster-CA，

该网络架构即轻量又提点。进一步将边界回归误差

更低的损失函数 (WIOU)开发到基线模型中，得到轻

量高效的煤矿人车检测模型 FCW-YOLO。该网络结

构如图 2所示。

采用通道剪枝算法对设计的 FCW-YOLO煤矿人

车检测模型进行二次轻量化设计：通过上述训练得到

最优 FCW-YOLO模型权重文件，然后采用通道剪枝

对 FCW-YOLO检测模型权重文件的 BN层进行稀疏

训练，得到通道级别的稀疏模型，其次根据实际裁剪

比例要求，人工设置一个全局剪枝阈值，模型可自动

识别不重要的通道并对其进行删减，最后对剪枝后的

模型进行微调重新训练，以恢复检测精度，这样即可

得到不损失精度的高压缩模型 FCWP-YOLO。我们

的方法可为煤矿智能化硬件装备的研制大大减少模

型的开销成本，实现高精度、实时的煤矿人车检测任

务。采用的通道剪枝算法将在下节详细展开。 

1.1　C2f-Faster-CA 模块设计

C2f作为 YOLOv8网络的核心模块，是模型特征

提取和特征融合阶段的重要部件，由于其结构上堆叠

了大量的卷积操作，造成了网络的特征冗余较大。

图 3给出了本文检测数据集中 P2层 C2f模块的特征

输出可视化示例，在煤矿人车检测任务中，这些特征

在不同通道中具有较高的相似性，造成了特征的重复

提取，增加了不必要的计算成本。为解决该问题，笔

者受到 CHEN等 [23]工作的启发，引入了一种 Faster-

 

KBA165井下
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图 1    轻量级煤矿人车检测模型实现的技术路线

Fig.1    Technical roadmap of lightweight coal mine pedestrian - vehicle detection model implementation
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Block以降低网络的计算成本。进一步将坐标注意力

(CA)开发到 Faster-Block中 (Faster-Block-CA)，以增

加网络的多尺度依赖，提升检测性能。最后，将 C2f

原有的 Bottleneck全部替换为 Faster-Block-CA，得到

设计的 C2f-Faster-CA轻量级架构。该轻量级架构的

具体细节如下展开。
 

1.1.1　Faster-Block模块

Faster-Block由 1个 3×3的部分卷积 (Partial Con-

volution，PConv)和 2个 1×1的 Conv层构成。在 Bot-
tleneck的堆叠网络中，每一个 Conv层后都有一个批

量归一化层和激活层，网络中过度使用这些层可能会

限制特征多样性，并且造成冗余现象。因此，Faster-
Block中仅在中间的 Conv层后使用批量归一化和激

活操作，以确保特征多样性和更低的延迟。

Faster-Block的关键组件是 PConv，原理可见图

4a。PConv核心是对第 1个或最后一个连续的通道作

为整个特征图的代表进行计算，相比传统卷积 (Conv)，
即仅需要对一部分输入通道数量 (Cp)的卷积进行空

间上的特征提取，并保留其余通道不变，通过恒等映

射使得该层的特征信息能够流过所有通道，在有效提

取特征的同时减少了计算冗余和内存访问。式 (1)和
式 (2)分别为 Conv和 PConv的计算量对比，以典型

的缩放因子 r=Cp/C 为例，当 r 为 1/4时，PConv的计

算量仅为 Conv的 1/16。

FConv = HWk2C2 (1)

FPConv = HWk2C2
p (2)

式中：H，W 分别为特征图高和宽；k 为卷积核尺寸；C
为普通卷积的通道数；Cp 为连续的通道数。 
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图 2    FCW-YOLO煤矿人车检测模型网络架构

Fig.2    Network architecture of FCW-YOLO coal mine pedestrian - vehicle detection model
 

图 3    第 1个 C2f模块中不同通道特征可视化

Fig.3    Visualization of different channel features in the first C2f

module
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1.1.2　坐标注意力模块

为降低 Faster-Block造成的部分特征损失影响，

引入了一种轻量化且易嵌入的坐标注意力[24](CA)机
制对其改进，旨在加强对重要特征信息提取的同时保

持模型轻量高效。CA网络架构见图 5。
首先将输入特征图分为宽度 (X 方向)和高度 (Y

方向)2个方向的同时进行全局平均池化，如下式表示：

zw
c (w) =

1
H

∑
0⩽ j⩽H

xc( j,w) (3)

zh
c(h) =

1
W

∑
0⩽i⩽W

xc(h, i) (4)

zh
c(h) zw

c (w)式中： 为高度为 h 的第 c 个通道输出；  为宽

度为 w 的第 c 个通道输出；W、H 分别为特征图宽和

高；xc 为第 c 个通道的输入；i 为高度 h 时的宽度坐标

值；j 为宽度 w 时的高度坐标值。

其次，将获得全局感受野范围 X 方向和 Y 方向的

特征图进行拼接以实现信息的交换，进一步经过批量

归一化处理后的特征图送入 Sigmoid激活函数得到特

征图 f：

f = δ
(
F1

([
zh,zw
]))

(5)

δ式中：F1 为拼接操作； 为非线性激活操作。

得到的各方向的特征图能够自适应捕捉输入图

像的长程依赖关系，保存各自的位置信息，同时采用

卷积采用对齐通道数，得到 X 方向注意力权重 gw 和

Y 方向的注意力权重 gh。最后将各方向注意力权重与

输入特征权重进行乘法加权计算，得到一组新的保留
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图 4    C2f-Faster-CA网络架构

Fig.4    C2f-Faster-CA network architecture
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位置信息的通道注意力特征图 F'，CA主要的计算公

式如下：

F′ = xcgh
cgw

c (6)

F′

gw
c gh

c

式中： 为 CA模块的输出特征图；xc 为输入特征图

权重； 为宽度为 w 时的注意力权重； 为高度为 h
时的注意力权重。 

1.2　损失函数优化

YOLOv8 网络中，损失函数由分类损失 (BCE)和
边界回归解耦的综合损失 (CIOU+DFL)组成。CIOU
回归损失考虑了边界框重叠面积和纵横比，解决了边

界框不相交情况下损失值不收敛的现象，但在煤矿人

车检测任务中，煤矿的地质条件差异较大、环境复杂、

遮挡等挑战较为严重，导致训练样本不平衡，从而使

训练产生较大的回归误差。为应对该挑战，我们采用

WIOU损失函数[25]作为回归损失替换 CIOU损失函

数。图 6为WIOU的预测框与真实框。
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图 6    WIOU损失函数真实框与预测框

Fig.6    Visualization of true and predicted boxes in wiou loss

function
 

LIOU RWIOU ∈ [1,e]

WIOU首先根据距离度量，通过消除纵横比因子

减少了锚框与目标框重合良好时几何因素的惩罚，同

时对 损失函数指数化得到 ，公式如

下：

RWIOU = exp


(
x− xgt

)2
+
(
y− ygt

)2
W2

g +H2
g

 (7)

LIOU = 1− WiHi

wh+wgthgt−WiHi
(8)

RWIOU ∈ [1,e]

式中：x 为预测框中心的横坐标，y 为纵坐标，w 为宽，

y 为高；xgt 、 ygt 、wgt 、hgt 分别为实际框中心横坐标、

纵坐标、宽和高；Wi 和 Hi 为预测框和实际框交集的宽

和高； 显著放大了普通质量锚框损失，可

有效降低样本质量不平衡所导致的误差。由此得到

2层注意力机制的WIOU v1：

LWIOUv1 = RWIOULIOU (9)
 

1.3　模型剪枝

模型修剪主要分为非结构化修剪 (权重修剪)和
结构化修剪 (通道、卷积核、网络层等修剪)，而非结构

化修剪主要针对模型权重进行修剪，需要特定硬件才

能实现压缩和加速效果，难以在煤矿场景的固定设备

下实现工业应用，不作为本文研究重点。

在开发的 FCW-YOLO检测器中，每个卷积后大

多都要经过一次批量归一化操作，大量的批量归一化

操作以保证数据稳定性，但同时造成了网络的冗余。

然而，当某个卷积通道的输出经过批归一化层时，根

据式 (10)，通道输出的大小取决于 γ 的取值，当 γ 的值

较小时，意味着该通道的输出对于整个网络的贡献较

小，因此我们可以考虑将该通道进行修剪。

μ =
1
m

m∑
i

xi

σ2 =
1
m

m∑
i

(xi−μ)2

x̂i =
xi−μ√
σ2+ ε

yi = γx̂i+β

(10)

x̂i

式中：m 为批次大小。μ 为输入数据均值，σ 为输入数

据的标准差，xi 为输入数据， 为经过批量归一化后的

输入，yi 为通道输出。γ 和 β 是训练过程中被不断更

新的可学习参数，分别是尺度因子和偏移量。

根据上述描述，本文在设计的 FCW-YOLO煤矿

人车轻量级检测器基础上，进一步采用通道修剪技术

对网络进行压缩，实现更轻量化的检测模型设计。图

7中红色通道表示贡献较高的保留通道，灰色通道表

示贡献较低的删减通道，具体步骤主要分为 3步：

∑
γ∈Γ

g(γ) =
∑
γ∈Γ
|γ|

λ
∑
γ∈Γ

g(γ)

1)稀疏训练，在网络训练过程中对批量归一化层

(BN)的 γ 因子施加 L1正则化，图 7c为 L1正则化稀

疏图解， 即所有 γ 元素绝对值的和，其

函数图像为正方形，而原函数的损失函数为一个个椭

圆形状，通过施加一个惩罚项 (稀疏项) ，与原

来的损失函数产生竞争作用，两者相交时使得整体损

失最小，即可将较多 γ 逼近 0。最后将其乘以对应层

的输出通道，以达到稀疏化的作用, 稀疏后网络 (图
7a)的冗余通道因子大多趋向于 0，稀疏公式如下：

L =
∑
(x,y)

l( f (x,W),y)+ λ
∑
γ∈Γ

g(γ) (11)

∑
(x,y)

l( f (x,W),y)
式中： 为基线模型的损失函数；x，y 分别
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g(γ) = |γ|
为目标输入输出；W 为训练权重；λ 为稀疏因子；g(γ)
为稀疏化的稀疏函数，其中 ；

2)修剪，经过稀疏化训练后的网络，在每个卷积

层中的通道中都有着对应的缩放因子 γ，对 γ 因子按

从小到大排序，进一步设置一个全局剪枝阈值 (剪枝

率)，小于该阈值的通道将被裁剪，用以控制需要裁剪

通道的比例。图 7b展示了裁剪后的网络模型，γ 因子

较小的通道被裁剪后，得到一个稀疏紧凑的网络。

3)微调，经过修剪后的网络由于卷积层通道结构

的改变，网络变得紧凑，造成了部分精度损失，因为需

要对剪枝后网络重新训练微调，即将剪枝后的权重文

件作为微调阶段的预训练权重，具体原理为：首先生

成一个与参数矩阵尺寸一致的 mask矩阵，根据上述

设置的全局修剪阈值将删减的通道中的权值设为 0，
其余为 1，在计算前将该 mask与参数矩阵相乘，mask
为 1的值继续训练并通过反向传播调整梯度，mask
为 0的部分输出始终为 0，因此不会对模型的其余计

算产生影响，由此即可得到几乎不损失精度的高压缩

煤矿人车检测模型。 

2　煤矿人车数据集构建

自建的煤矿人车 (煤矿工人和载人车辆 )(Coal
mine personnel and manned vehicle detection，Cpmv)检
测数据集来源于贵州省多个煤矿，因此将其命名为

Cpmv，选用煤矿本质安全型号为 KBA165的防爆监

控摄像头获取，采集分辨率为 1 920×1 080，采集的各

个摄像头高度为 2.5～3 m，摄像头俯角在 40°～70°，
以确保最大化监控范围，避免拍摄到过多噪声影响图

像质量。为实现具有众多挑战的煤矿场景数据集构

建，在主平硐入口 (白天场景和夜晚场景)、水泵房、皮

带机口、架空乘人机头、机尾、中段等多个摄像头处，

通过 VS player软件将采集到的监控视频切分为图片。

同时我们尽量考虑符合实际情况的密集，遮挡场景，

在煤矿工程师的指导下从中筛选特征信息相似度较

低的 2 272张图片。自建的 Cpmv数据集中包含了煤

矿工人、平巷人车和煤矿架空乘人装置 (俗称猴车)等
具代表性的煤矿人车样本。共计 4个类别，分别为煤

矿工人，平巷人车，载人状态的猴车，无载人状态的猴

车，采用 labelimg标注软件分别将其标注为 miner、
PHRC、HC-m、HC-nom，按照 7∶2∶1的比例随机划

分为训练集 (1  590张 )、验证集 (454张 )和测试集

(228张)，其中验证集用于模型的评估，测试集用于模

型的推理可视化展示。Cpmv数据集分布情况见表 1。
图 8a给出了自建数据集标注示例，图 8b给出了标注

数据集相对宽高比例的统计分布。
  

表 1    煤矿人车数据集划分及分布

Table 1    Division and distribution of coal mine
pedestrian-vehicle dataset

类别 标注 训练集 验证集 测试集 合计

煤矿工人 miner 2 700 812 372 3 884

平巷人车 PHRC 344 76 46 466

载人的猴车 HC-m 816 228 136 1 180

无载人的猴车 HC-nom 724 232 112 1 068

合计 4 584 1 348 666 6 598
 

3　实验与结果
 

3.1　实验环境及评估指标

本文工作开展的主要硬件配置和软件配置如表

2所述。图像输入尺寸为 640×640，训练轮次为 200，
批次为 32，学习率为 0.001，优化器为 Adamw，在最后

20个轮次关闭马赛克增强以保证训练的稳定。同时

采用了式 (12)—式 (15)的指标以评估模型的检测性

能。另外，一些通用指标如网络参数量，计算量和模

型大小被用以衡量网络复杂度。推理时间被用于衡

量模型的检测速度，即模型处理每张图像的用时。
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图 7    通道剪枝示意

Fig.7    Channel pruning illustration
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P = TP/(TP+FP) (12)

R = TP/(TP+FN) (13)

AP =
w 1

0
P(R)d(R) (14)

mAP =
N∑
i

APi

/
N (15)

式中：P 为精确率，用于评判检测为正样本的概率；R
为召回率，用于评判检测框漏检情况，其值越大模型

漏检率越低；AP为平均精度，是 P-R曲线下的面积，

表示模型在不同召回率下的平均精确率；mAP为平均

精度均值，衡量了模型在多个检测类别上的平均精度，

是综合评价模型检测性能的重要指标，本文选取了

IOU阈值为 0.5时计算 AP及 mAP；TP、FN和 FP分

别为正检框、漏检框和误检框数目；N 为检测类别

数。 

3.2　FCW-YOLO 实验分析

为验证设计及改进模块的有效性，对基线模型开

展了表 3所示的消融实验，其中模型 1为基线模型

(YOLOv8s)，模型 2—模型 8为改进模块不同的排列

组合所得到。单独采用 Faster-Block对基线改进后

(模型 1)，模型复杂度指标大幅降低，同时检测精度并

没有明显降低。在单独采用注意力模块对基线改进

后 (模型 2)，模型复杂度指标仅有些许增幅，但检测精

度有明显上涨。进一步将 CA融合到 Faster-Block中

对基线改进后得到模型 5，此时模型复杂度降低的同

时，检测性能也得到了有效提升。根据模型 4结果，

采用 WIOU损失函数改进后，模型总体检测精度也有

较大改善，采用 Faster-Block联动 WIOU后 (模型 5)，
模型检测性能进一步提升，并且模型更加轻量化。通

过模型 7和模型 8的对比发现，模型 7对煤矿工人类

别的检测精度为消融实验中最高，但平均精度均值却

不如模型 8，总体而言在单独采用 Faster-Block时精度

虽有略微丢失现象，但在结合了 CA和 WIOU模块的

优势后，CA一定程度弥补了 Faster-Block中部分卷积

丢弃通道信息损失的影响，使得提出的模型 8即轻量

又高效准确，证明了 Faster-Block在耦合使用时不仅

能增加检测性能还能有效降低网络开销。此外，根据

模型 4,6,7,8结果对比可知，WIOU的引入对模型复杂

度和推理时间没有影响，同时与各模块组合优化时，

检测性能都得到了提升。图 9为基线模型和改进模

型的边界回归损失对比，采用 WIOU改进后，模型的

损失值收敛得更快，最终的边界回归误差也更低。

本文提出的模型参数量为 8.3 M，计算量为 22.0
GFLOPs，模型大小为 16.1 MB，对比基线模型，分别降

低了 25.9%，22.5%，24.8%。根据表 3消融实验结果

和图 10改进前后 P-R曲线对比，改进后 P-R曲线表

现更好，煤矿工人，平巷人车，载人猴车和无载人猴车

的精度分别提升了 3.0%，3.4%，2.5%，1.7%，总体精度

提升了 2.6%，这说明了笔者提出方法是合理的，在煤

矿人车检测任务中能较好的识别和定位目标。同时

 

(a) (b)

(c) (d)

(e) (f)
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(b) 数据集相对宽高比例 

(a) 数据集标注及各场景示例

图 8    自建的数据集标注及统计分布

Fig.8    Self-constructed dataset labeling and statistical

distributions
 

表 2    实验环境配置

Table 2    Experimental Environment Configuration

配置 名称 型号

硬件

CPU×2 Intel Xeon 8275CL

GPU NVIDIA RTX A6000(48G)

RAM×8 32G 3 200 DDR4 RECC(256G)

软件

Python 3.9

Pytorch 2.0

Cuda 11.8
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由于改进模块无法避免网络堆叠次数的增加，模型内

存访问量会因此增加，推理时间随之变慢，笔者的方

法推理时间为 9.8 ms，虽然比基线高了 3.2 ms，但仍然

是低于 30 ms的实时检测要求。综上，消融实验结果

表明，单个模块改进对模型的复杂度和检测精度都有

改善，并且复合模块的改进效果更好，优于单一模块

改进，我们提出的模型从模型轻量化，检测性能，速度

多方面考虑更加优越。 

3.3　通道剪枝实验分析

表 4给出了对提出的 FCW-YOLO检测模型在通

道修剪阶段的实验设置，将剪枝后的模型记为 FCWP-
YOLO。除剪枝率外，其余超参数根据刘等[22]的工作

确认。通过在 0.1～0.9范围内迭代以测试模型的综

合性能来确定最优剪枝率，其选择原则为几乎不损失

精度的情况下，最大化的压缩模型。 

3.3.1　稀疏训练阶段

图 11为 Tensor-board可视化软件导出的 FCW-
YOLO稀疏训练前后的 BN层通道尺度因子 γ 分布对

比。FCW-YOLO没有稀疏训练时 (图 11a)，此时 γ 呈

正态分布，仅有少部分 γ 值趋于 0，模型无法根据 γ 大

小筛选是否为重要通道，无法进行下一步剪枝操作。

FCW-YOLO稀疏训练后 (图 11b)，γ 从正态分布逐渐

过渡到基本趋近于 0，模型变得稀疏，并且到后期 γ 分

布变化不大，说明稀疏训练达到稳定状态，此时即可

 

表 3    消融实验

Table 3    Ablation Experiments

模型

改进模块 模型复杂度评估指标 模型精度评估指标 模型速度评估指标

Faster-Block CA WIOU
参数量/

M

计算量/

GFLOPs

模型大小/

MB
APminer/% APPHRC/% APHC-m/% APHC-nom/% mAP/% 推理时间/ms

1(基线) 11.2 28.4 21.4 91.5 95.1 83.2 80.6 87.6 6.4

2 √ 8.2 21.4 16.0 92.7 92.3 84.9 79.2 87.3 6.9

3 √ 11.3 28.6 21.6 92.9 96.9 81.3 82.1 88.3 8.3

4 √ 11.2 28.4 21.4 93.1 94.4 86.1 81.1 88.7 6.4

5 √ √ 8.3 22.0 16.1 93.5 95.7 82.8 83.7 88.9 9.8

6 √ √ 8.2 21.4 16.0 93.7 95.6 84.9 83.1 88.8 6.9

7 √ √ 11.3 28.6 21.6 96.1 95.2 84.9 81.9 89.6 8.3
8

本文
√ √ √

8.3

(−25.9%)

22.0

(−22.5%)

16.1

(−24.8%)

94.5

(+3.0%)

98.5

(+3.4%)

85.7

(+2.5%)

82.3

(+1.7%)

90.2

(+2.6%)
9.8
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图 9    边界回归损失函数曲线对比

Fig.9    Comparison of boundary regression loss function curves

 

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

精
确
率

召回率

APminer: 91.5%

APPHRC: 95.1%

APHC-m: 83.2%

APHC-nom: 80.6%

mAP: 87.6%
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(b) FCW-YOLO的P-R曲线

图 10    改进前后的 P-R曲线

Fig.10    P-R Curve Comparison Before and After Improvement
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根据剪枝率修剪不重要的通道。 

3.3.2　剪枝和微调

在剪枝和微调阶段，对不同剪枝率 ([0.1-0.9])的
FCW-YOLO模型进行了实验，评估结果见表 5，表 5
中 mAP为经过微调后模型的检测精度。随着剪枝率

的增加，模型的参数量、计算量、模型体积和推理时间

不断下降。然而，模型的 mAP随着剪枝率的增加不

断波动，在修剪率为 0.4时 mAP达到最高。修剪率

为 0.7时，对比没有修剪的 FCW-YOLO模型，mAP
为 88.7%，在仅损失 1.5% 精度的情况下模型的开销大

幅降低，推理时间仅为 5.6 ms。但在修剪率达到 0.8
以后，模型的检测性能急剧下降。剪枝率为 0.9时，模

型压缩效果最好，但损失过多检测性能，精度仅为

32.6%。因此，FCW-YOLO模型的剪枝率设置为 0.7
最为合适。
 
 

表 5    不同剪枝率下 FCW-YOLO 模型的性能指标

Table 5    Performance metrics of FCW-YOLO model at
different pruning rates

剪枝率
参数量/

M

计算量/

GFLOPs

模型大小/

MB
mAP/

%

推理时间/

ms

0 8.3 22.0 16.1 90.2 9.8

0.1 7.3 18.9 14.3 89.6 8.6

0.2 6.2 16.3 12.2 88.5 8.1

0.3 5.5 14.1 10.9 89.7 7.9

0.4 4.5 11.7 8.7 91.4 7.2

0.5 3.7 9.6 7.4 90.1 6.8

0.6 3.2 8.2 6.4 89.6 6.1

0.7 2.3 6.0 4.9 88.7 5.6

0.8 1.6 4.2 3.6 76.7 5.4

0.9 0.8 2.1 2.3 32.6 4.6

　　注：剪枝率为0时表示没有进行剪枝的FCW-YOLO模型。
 

图 12为剪枝率 0.7时 FCW-YOLO模型剪枝前

后各网络层通道数对比。剪枝后，各层通道数量大幅

减少，尤其是 18～62层的网络通道得到大幅修剪，同

时可以看出网络层数越深的网络，修剪比例就越大，

说明了网络层数较深的层存在了大量的冗余通道。

修剪后，通道总数从 11 781减少到了 3 443，通道删减

比例为 70.1%，这与设置的剪枝比例基本一致。这表

明了通道剪枝方法使我们设计的模型更加紧凑，并且

这几乎不损失模型检测性能，该方法能够有效简化

FCW-YOLO网络结构，实现模型压缩，验证了我们提

出方法的有效性。

表 6给出了基线与改进阶段和模型压缩阶段性

能对比的总结。对比基线，笔者设计的 FCW-YOLO
展现了出色的检测性能，并减少了计算成本，但推理

速度有所增加。在通道剪枝阶段，模型计算成本大幅

降低，由于模型通道结构的改变，同时检测性能也一

定下降趋势。但通过微调以后，模型的检测性能几乎

恢复到了没有修剪之前，虽然这是牺牲了 1.5% 的检

测精度实现的，但其检测性能仍然是优于基线，并且

推理速度也比基线要快。此时得到了高度压缩且检

测性能优异的煤矿人车检测器，即 FCWP-YOLO。总

的来说，对比基线，笔者提出方法的参数量，计算量和

模型大小的压缩比分别达到了 4.9、4.7、4.4倍，压缩

效果远优于设计的轻量级 FCW-YOLO，检测精度为

88.7%，增加了 1.1%，推理速度仅为 5.6 ms。这是目前

 

表 4    FCW-YOLO 在通道剪枝阶段的实验超参数

Table 4    Experimental hyperparameters of FCW-YOLO in
channel pruning stage

实验阶段 超参数 数值

稀疏训练

学习率 0.001

批次大小 32

稀疏因子 (λ) 10−4

轮次 200

剪枝 剪枝率* [0.1, 0.9]

微调 与训练阶段一致
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(b) 稀疏训练后的γ分布

图 11    FCW-YOLO模型稀疏训练前后的 γ 分布

Fig.11    Distribution of γ before and after sparse training of FCW-

YOLO model
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替换网络无法达到的效果，验证了笔者对基线二次轻

量化设计的有效性。
 

4　讨　　论
 

4.1　轻量级网络对比

轻量级网络在能有效减少模型参数量和计算复

杂度，这包括一些轻量级主干和轻量级颈部的开发。

对此在表 7中，采用了多个先进的轻量级骨干网络和

颈部对 YOLOv8s网络进行了替换，这包括 ShuffleN-
etV2[26]，MobileNetV3-s[27]， EfficientNet-lite0[28]， Slim-
neck[29]，这些轻量级网络用于对比笔者提出的 FCWP-
YOLO检测模型性能。其中，参数量、计算量、模型

大小、推理时间越小越好；mAP越大越好。对比基线，

轻量级网络的替换使得网络开销都得到了不同程度

的优化，但检测速度变化却不一致。ShuffleNetV2和

EfficientNet-lite0的推理时间减少了，MobileNetV3-s
和 Slim-neck推理时间却增加了，这表明了轻量级网

络的规模对推理时间是有影响的，但并不是成正比关

系。另一方面，大多轻量级网络有效减少了计算成本，

但 ShuffleNetV2和MobileNetV3-s检测性能下降较多，

这是以牺牲了较多精度为代价实现的，并且它们的轻

量级程度也远不如我们提出的模型。EfficientNet-
lite0检测精度是高于基线的，但是计算成本远高于我

们提出的方法。这表明了轻量级网络的替换对于

YOLOv8s的改进作用是有限的，网络开销的降低明显

不如通道剪枝方法带来的收益大。然而，我们的方法

FCWP-YOLO考虑了轻量级架构，注意力模块，损失

函数，通道修剪等多维度因素，各项指标都得到了正
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图 12    剪枝前后 FCW-YOLO的通道数量对比

Fig.12    Comparison of channel numbers before and after pruning FCW-YOLO
 

表 6    基线与改进阶段和模型压缩阶段的性能对比。

Table 6    Performance Comparison between Baseline, Improvement, and Model Compression Stages

阶段 模型 参数量/M 压缩比 计算量/GFLOPs 压缩比 模型大小/MB 压缩比 mAP/% 推理时间/ms

基线 YOLOv8s 11.2 / 28.4 / 21.4 / 87.6 6.4

轻量级改进 FCW-YOLO* 8.3 1.4× 22.0 1.3× 16.1 1.3× 90.2(+2.6%) 9.8

剪枝 FCWP-YOLO* 2.3 4.9× 6.0 4.7× 4.9 4.4× 80.5(−7.1%) 5.6

微调 FCWP-YOLO* 2.3 4.9× 6.0 4.7× 4.9 4.4× 88.7(+1.1%) 5.6

　　注：带*的模型均为本文提出的方法，压缩比计算为基线网络开销与改进后的网络开销比值。

 

表 7    轻量级网络对比实验

Table 7    Comparative experiment of lightweight networks

轻量级网络 参数量/M 计算量/GFLOPs 模型大小/MB mAP/% 推理时间/ms

YOLOv8-s(基线) 11.2 28.4 21.4 87.6 6.4

ShuffleNetV2 6.1(−45.5%) 15.9(−44.0%) 11.9(−44.4%) 82.3(−5.3%) 5.1(−20.3%)

MobileNetV3-s 6.5(−42.0%) 16.3(−42.6%) 12.8(−40.2%) 84.3(−3.3%) 6.7(+4.7%)

EfficientNet-L0 9.3(−17.0%) 22.0(−22.5%) 18.1(−15.5%) 87.9(+0.3%) 5.7(−10.9%)

Slim-neck 10.5(−6.2%) 25.6(−9.9%) 20.4(−4.7%) 87.1(−0.5%) 6.9(+7.8%)

FCWP-YOLO(Ours) 2.3(−79.5%) 6.0(−78.9%) 4.9(−77.1%) 88.7(+1.1%) 5.6(−12.5%)

　　注：表中加粗表示模型指标相比基线得到正优化。
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优化，实现了检测精度和处理效率之间的平衡，进一

步表明了通道剪枝方法比轻量级网络的替换更为有

效，仅用较少成本的网络开销即可实现先进的检测性

能。 

4.2　主流检测模型对比

为验证提出方法的优越，将提出的 FCWP-YOLO
模型与多个主流的先进检测器进行了对比实验，包括

两阶段的 Faster-RCNN[7]、一阶段的 SSD[9]、YOLOv3-
tiny[30]、 YOLOv5[13]、 YOLO6[14]、 YOLOv8[22]、 基 于

Transformer架构的 DETR[8] 、Deformable-DETR[31]等。

为保证实验的一致性，采用相同的实验环境，数据集

和超参数设置。其中选用的 Faster-RCNN，DETR和

Deformable-DETR主干网络均为 Resnet50，SSD主干

网络为 VGG16。结果如表 8所示。
 
 

表 8    主流检测网络对比实验

Table 8    Comparative Experiment of Mainstream Detection Networks

模型 参数量/M 计算量/GFLOPs 模型大小/MB mAP/% 推理时间/ms

YOLOv8-s(基线) 11.2 28.4 21.4 87.6 6.4

Faster-RCNN 40.6(+262.5%) 208.4(+633.8%) 320.4(+1 397.2%) 74.5(−13.1%) 52.3(+717.2%)

SSD 23.8(+112.5%) 30.3(+6.7%) 183.8(+758.9%) 79.6(−8.0%) 18.9(+195.3%)

YOLOv3-tiny 103.6(+825.0%) 282.2(+893.7%) 207.8(+871.0%) 85.6(−2.0%) 7.9(+23.4%)

YOLOv5-s 9.1(−18.8%) 23.8(−16.2%) 17.4(−18.7%) 87.7(+0.1%) 6.0(−6.3%)

YOLOv6-n 4.2(−62.5%) 11.8(−58.5%) 8.3(−61.2%) 84.2(−3.4%) 6.5(+1.6%)

YOLOv8-x 68.1(+508.0%) 258.1(+808.8%) 274.9(+1 184.6%) 89.8(+2.2%) 12.3(+92.2%)

DETR 41.5(+270.5%) 94.9(+234.2%) 477.2(+2 129.9%) 83.6(−4.0%) 78.1(+1 120.3%)

Deformable-DETR 40.1(+258.0%) 190.0(+569.0%) 400.7(+1 772.4%) 84.9(−2.7%) 57.1(+792.2%)

FCWP-YOLO(Ours) 2.3(−79.5%) 6.0(−78.9%) 4.9(−77.1%) 88.7(+1.1%) 5.6(−12.5%)

　　注：表中加粗表示模型指标相比基线得到了正优化。各指标的增减百分比计算为“(对比模型指标−基线指标)/基线指标”。
 

根据上表实验结果可知，两阶段的算法 Faster-
RCNN不仅检测性能较差，而且网络的开销也较大，

推理速度较慢，说明了早期的两阶段算法难以适应煤

矿复杂条件的人车检测任务。基于 Transformer架构

端到端的 DETR检测器不仅检测精度较低，模型体积

也较大，推理速度为所有对比模型中最慢，尽管 De-
formable-DETR通过可变形卷积改善了 DETR的检测

性能，但模型体积和推理速度仍然较慢，显然不满足

本文实时检测要求 (30 ms)，以 Transformer为架构的

检测算法对于大型数据集全局信息处理更有优势，但

并不适用于本文中小型数据集，此外自注意力机制使

得模型的复杂度呈指数增加，推理延迟过长，不满足

视频流信息的实时推理。在实验的单阶段检测算法

中，SSD的检测精度是最低的，仅为 79.6%，相比其他

单阶段等比规模的网络，SSD的模型也更为复杂，检

测速度虽达到了实时检测要求，但仍不如 YOLO系列。

大多 YOLO系列的先进检测算法的精度基本都在

85% 以上，并且检测速度都较快，但难以实现检测性

能和检测效率的平衡。如 YOLOv6n的网络较为轻量，

但检测性能是不如较大规模的 x 系列的，YOLOv8x
的检测精度为对比实验中最高的，但网络计算成本仍

然较高，对于资源受限的煤矿场景而言，部署这类较

大模型仍然存在挑战。然而，我们的方法网络计算成

本均为最低，同时检测性能也达到了头部水平，仅低

于 YOLOv8x，但提出的模型参数量，计算量和模型体

积远远小于 YOLOv8x，推理速度为最快，证明了我们

提出的模型在人车检测任务中轻量化、实时性和准确

性方面的优越。

图 13展示了部分主流模型和提出模型在自建的

煤矿人车检测数据集中的推理可视化，其中图 13a代

表密集场景的主井闸机入口场景，仅有煤矿工人类别；

图 13b和图 13c分别代表主平硐白天和夜晚场景，包

含煤矿工人和平巷人车类别；图 13d代表水泵房场景，

仅有煤矿工人类别；图 13e代表皮带机头场景，仅有

煤矿工人类别；图 13f和图 13g代表猴车机头场景，包

含煤矿工人、载人猴车和无载人猴车类别；图 13h代

表机头中段场景，仅有载人猴车类别。根据图 13检

测结果可知，Faster-RCNN在图 13a中密集场景出现

冗余框现象，在图 13b中遮挡场景出现定位不准现象；

YOLOv3-tiny在图 13a和图 13b中不仅出现定位不准，

还出现了漏检的现象，在图 13c中的夜晚场景也出现

了冗余框现象；SSD的检测表现较差，在图 13f、图

13g和图 13h等密集遮挡场景都出现了漏检现象和部

分定位框不准现象，同时在图 13(f)中还将载人猴车
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识别成了无载人猴车；本文的基线模型 YOLOv8s仅
在图 13f中出现了小目标载人猴车的漏检；在图 13d、
图 13e等几乎无遮挡，密集的简单场景，所有模型都

正确检测到目标；笔者提出的模型 FCWP-YOLO即使

在大多背景复杂的情况下也可准确的预测和定位各

类场景下的煤矿人车目标，仅在图 13a密集遮挡场景

发生了一个目标漏检的情况，对比其他模型的检测可

视化仍然是较为精准的。综合上述大量的对比实验

和可视化对比，提出的方法在在煤矿各类场景出色的

完成了人车检测任务，在轻量化和实时性方面表现出

了巨大的优势，同时检测性能达到了先进的水平，可

有效提升煤矿智能巡检工作的水平和效率。
 
 

本文 Faster-RCNN YOLOv3-tiny

(a)

(b)

(c)

漏检框 冗余框 边界框定位不准 错检框

(d)

本文 SSD YOLOv8s

(e)

(f)

(g)

(h)

图 13    主流模型与提出模型的检测可视化

Fig.13    Detection visualization of mainstream models and proposed models
 
 

4.3　视频流推理验证

为验证提出模型在实际应用中的效果，我们在测

试视频中的多个典型场景进行了视频流的推理测试

实验，并在每个场景中随机选取了 3个片段的推理画

面进行展示，同时给出了视频流推理的平均速度，结

果见图 14。图 14a为主井入口场景，共计 2 450帧视

频流画面，包括煤矿工人类别和平巷人车类别，平均

每帧图像推理速度为 6.0 ms；图 14b—图 14c为猴车

机头场景，共计 1 703帧视频流画面，包括煤矿工人类

别和载人猴车和无载人猴车类别, 平均每帧图像推理

速度为 6.2 ms；图 14d为主井闸机场景，共计 451帧视

频流画面，仅有煤矿工人类别, 平均每帧图像推理速

度为 6.3 ms。在多个场景的视频流推理可视化展示表

明，提出的 FCWP-YOLO模型可适应大多场景的煤矿

人车检测任务，模型能够有效辨识检测任务中的多目

标物体，即煤矿工人和载人车辆的差异，几乎没有出

现漏检错检的现象，模型的鲁棒性能较为稳定，检测

性能也较好。同时，提出模型在多个场景下的平均检

测推理速度为 6.17 ms，保证了实际视频流检测任务中

的实时性，此外通过与上节得到的在 0.7剪枝率条件

下的 FCWP-YOLO推理速度相比 (5.6 ms)，视频流检

测增加了一定的推理延迟，这是由于视频流推理时需

要一定的解码时间，但模型在各场景下的推理时间波

动不大，基本都稳定在 6.2 ms左右，推理时间仍然是

低于 30 ms，远满足实时检测要求，进一步说明了提出

模型在实际应用中准确性和实时性方面的强大表现

力。 

4.4　局限与未来工作

提出的方法是初次应用于煤矿人车检测任务，该

方法不以牺牲检测精度为代价实现了网络模型的有

效压缩，但还存在一些不足，在未来的工作的将做出

如下改进：① 在密集场景及遮挡场景检测任务中出现

了少许的漏检情况，因此在检测网络设计阶段，可引

入采样范围较大的卷积如空洞卷积，可变形卷积以应

对复杂多变的空间特征；② 本文仅对煤矿工人，平巷

人车，载人和无载人猴车类别开展了轻量级的智能检

测研究，下一步将细分煤矿人车状态类别，如煤矿工

人的行走状态，工作状态，危险行为等，旨在进一步提

升煤矿安全管理水平；③ 该工作仅调研了贵州地区煤

矿视频监控数据集，并开发了一种新型的轻量级人车

检测模型。然而，南方煤矿和北方煤矿地质和生产条

件存在一定的差异性，故下一步将对北方煤矿的视频

监控进行调研，采集更多数据集并集成到我们设计的

模型中，使得我们的方法能够泛化到各类煤矿场景。
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5　结　　论

1) Faster-Block中的部分卷积可减少重复特征的

提取，降低计算成本，坐标注意力的引入可抑制 Faster-
Block仅计算部分通道造成的特征损失影响，加强关

键信息的提取，降低煤矿复杂背景干扰。WIOU边界

损失函数增加了对训练过程中普通质量样本的关注，

降低了由高质量样本主导梯度带来的回归误差。

2)采用通道剪枝技术对设计的 FCW-YOLO网络

中的批量归一化层的尺度因子施加正则化稀疏训练

后，可筛选趋于零的冗余通道，模型通过剪枝和微调

后，相比基线，模型的计算成本得到了有效降低，同时

检测精度提升了 1.1%，这是替换轻量级架构无法达到

的效果。

3)自建的数据集实验结果表明，对比多种轻量级

网络和主流先进检测网络，提出的 FCWP-YOLO轻量

级人车检测模型在煤矿各类场景下出色完成了检测

任务，模型在轻量级，实时性方面的表现均为最优，同

时检测性能也达到了先进水平。我们的方法可有效

降低煤矿智能化装备的研发成本，在未来我们将使用

提出的方法探索更多煤矿实际应用场景下的有效性

和可行性，推动煤矿智能化发展进程。

4)通道剪枝算法可有效压缩网络模型，但在稀疏

训练阶段需耗费较多的时间和显存，未来将进一步结

合知识蒸馏技术，应用通道剪枝方法对学生模型进行

修剪。在修剪过程中，可以利用教师模型的知识作为

剪枝的依据，保留对教师模型预测影响较大的通道，

减少通道数量的同时提高网络的训练效率。
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