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摘　要：近年来，随着煤矿智能化技术快速发展，煤矿设备全寿命周期健康管理与智能维护技术作

为实现煤矿设备运行健康状态智能感知、智能识别和维护决策，保障煤矿设备高效可靠运行的重

要手段，相关研究受到了广泛关注。然而，目前煤矿仍然以事后维修、预防维修等方式为主，难

以满足煤矿设备的高可靠性需求。基于此，综述了煤矿设备全寿命周期健康管理与智能维护的研

究进展以推动其在煤矿的应用，阐释了煤矿设备全寿命周期的健康管理与智能维护内涵，给出了

煤矿设备健康管理与智能维护总框架。从煤矿设备大数据管理方法、健康状态评估方法、剩余使

用寿命预测方法、智能维护决策方法 4 方面分析了煤矿设备健康管理与智能维护方法研究现状。

在煤矿设备大数据管理方面，总结了煤矿设备多源信息感知、大数据清洗、大数据集成及存储方

法的最新研究成果，深入分析对比了相关方法的应用情况，指出了现阶段煤矿设备大数据管理存

在的挑战。在煤矿设备健康状态评估方面，从煤矿设备监测信号特征提取、健康状态等级划分、

健康状态评估模型构建 3 方面出发探讨了煤矿设备健康状态评估关键方法最新发展现状，对比分

析了不同方法的优缺点，总结了该领域面临的难题。在煤矿设备剩余使用寿命预测方面，分析了

统计模型方法、物理模型方法和数据驱动方法在煤矿设备剩余使用寿命预测上的优缺点，指出了

煤矿设备剩余使用寿命方法存在的问题。在煤矿设备智能维护决策方面，明确了煤矿设备预测性

维护决策主要步骤，对比分析了煤矿设备智能维护方法最新研究成果及其优缺点，归纳了现阶段

煤矿设备智能维护方法研究的不足。结合煤矿设备全寿命周期健康管理与智能维护面临的挑战及

发展要求，从煤矿设备大数据管理方法、时变工况下设备健康评估方法、多因素影响下设备剩余

使用寿命方法、煤矿设备多目标智能维护决策方法、健康管理与智能维护算法集成及系统开发等

方面对煤矿设备健康管理与智能维护提出了展望，指明了煤矿设备健康管理与智能维护关键理论、

方法的研究方向，为提升煤矿设备健康管理及智能维护水平，促进煤炭工业转型升级和高质量发

展提供依据。
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Abstract: In recent years, with the rapid development of intelligent technology in coal mines, the whole life cycle health
management and intelligent maintenance technology of coal mine equipment has attracted wide attention. It is an essential
means  to  realize  intelligent  perception,  intelligent  identification,  and  maintenance  decisions  of  the  health  status  of  coal
mine equipment and ensure its efficient and reliable operation. However, at present, the coal mine is still primarily based
on post-maintenance and preventive maintenance,  which is  challenging to  meet  the high-reliability  requirements  of  coal
mine equipment. Based on this, this paper reviews the research progress of the whole life cycle health management and in-
telligent maintenance of coal mine equipment to promote its application in coal mines. The connotation of health manage-
ment and intelligent maintenance for coal mine equipment is explained, and the general framework of health management
and intelligent  maintenance  for  coal  mine  equipment  is  given.  The research  analyzes  the  status  of  coal  mine  equipment
health management and intelligent maintenance technology from four perspectives: big data management, health status as-
sessment, remaining useful life prediction, and intelligent maintenance decision-making technology. In the big data man-
agement of coal mine equipment,  the latest  achievements of multi-source information perception,  big data cleaning, and
big data  integration and storage of  coal  mine equipment  are  summarized,  the  application of  the  relevant  method is  ana-
lyzed and compared, and the existing challenges of these methods are pointed out. In terms of coal mine equipment health
status assessment, the latest development statuses of key methods are discussed from three aspects of feature extraction,
health status classification, and health status assessment model construction, then the advantages and disadvantages of dif-
ferent methods are compared and analyzed, and the problems faced in this field are summarized. In the remaining useful
life prediction of coal mine equipment, the advantages and disadvantages of the statistical model method, physical model
method, and data-driven method are compared, and the problems of existing methods are expounded. In terms of intelli-
gent maintenance of coal mine equipment, the main steps of coal mine equipment predictive maintenance are defined, the
latest research results of intelligent maintenance methods of coal mine equipment and their advantages and disadvantages
are compared and analyzed, and the deficiencies of the current research on intelligent maintenance decision technology are
summarized.  Combined with  the  challenges  and development  requirements,  the  prospect  of  coal  mine equipment  health
management and intelligent maintenance technology is explored from the aspects of big data management, health status as-
sessment under time-varying working conditions, remaining useful life prediction under the influence of multiple factors,
multi-objective  intelligent  maintenance  decision-making,  algorithm  integration  and  system  development  of  coal  mine
equipment. The research direction of critical theories and methods of health management and intelligent maintenance for
coal mine equipment is pointed out, which provides a basis for improving the level of health management and intelligent
maintenance of the coal mine equipment and promoting the transformation and upgrading of coal industry and high-qual-
ity development.
Key words: coal mine equipment；big data management；health status assessment；remaining useful life prediction；in-
telligent maintenance decisions
  

0　引　　言

煤矿智能化是煤炭工业高质量发展的核心技术

支撑，是保证国家“十四五”碳达峰、碳中和战略持续

推进的重要任务[1-3]。近年来，美国、德国、澳大利亚

等国都制定了相应的煤矿发展规划[4]，我国也相继发

布了一系列相关政策，明确了煤矿智能化发展的主要

目标和任务。煤矿设备在煤矿生产占有重要地位，王

国法院士[5-6]指出全矿井设备和设施健康管理是智能

开采急需突破的关键核心技术。煤矿设备多为低速

重载设备，工况环境复杂多变、设备结构层次复杂、设

备间耦合程度高、关联关系复杂等特点导致设备带病

工作现象普遍，如不及时准确的进行监测及维护将造

成严重的安全事故[7-8]。随着煤矿设备大型化、智能

化、复杂化发展，传统的事后维修、预防维修等方式已

难以满足煤矿设备的高可靠性需求。新形式下，煤矿

设备管理及维护模式需要同步发展，以期符合煤矿设

备应用与管理需求[9-10]。因此，如何利用人工智能、大
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数据、云计算等各领域的最新成果，实现煤矿设备的

全寿命周期监测、服役状态识别与精细化管理成为煤

矿智能化进程中急需解决的问题。

近年来，煤矿设备全寿命周期的健康管理与智能

维护研究受到广泛关注[9,11]。煤矿设备故障预测与健

康管理、预防性维护等技术通过对采集的监测信息进

行分析和挖掘，识别煤矿设备异常状态与故障，评估、

预测设备的健康状态与剩余使用寿命。根据预测结

果分析故障发生原因，制定相应的维护计划以达到提

前维护的目的，从而降低维护成本和故障率，优化维

护策略和资源配置。煤矿设备全生命周期健康管理

与智能维护框架包括数据管理层、数据智能分析处理

层和应用服务层，如图 1所示。

数据管理层是煤矿设备健康管理及智能维护的

基础，主要用于煤矿多源异构大数据的采集、清洗、集

成及存储，确保数据的规范性和可靠性，统一数据底

座。数据智能分析处理层是煤矿设备管理及维护的

核心部分，主要包括煤矿设备健康状态评估、剩余使

用寿命预测及智能维护决策等关键技术及方法。应

用服务层是将数据智能分析处理结果用于实际生产

维护管理的关键环节，利用先进的技术标准架构开发

煤矿设备维护和管理平台及系统，实现煤矿设备在线

监测、故障超前预警、健康状态评估、剩余使用寿命

预测、维护决策、智能诊断、算法集成、全生命周期管

理等服务。综上所述，3层结构共同构建了煤矿设备

健康管理与智能维护的技术框架，为煤矿企业提供了

煤矿设备全寿命周期管理和维护方案。

针对煤矿设备、系统或过程的健康管理与智能维

护方法应用还处于起步阶段，对于煤矿设备健康管理

与智能维护的认识还不够深入。现有研究难以对煤

矿设备健康管理与智能维护最新方法、热点方向、研

究挑战及展望进行全面梳理。因此，笔者从煤矿设备

大数据管理方法、健康状态评估方法、剩余使用寿命

预测方法及智能维护决策方法 4方面分析了煤矿设
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图 1    煤矿设备全生命周期健康管理与智能维护框架

Fig.1    Framework of the whole life cycle health maintenance and intelligent management for coal mine equipment
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备健康管理与智能维护研究现状，深入归纳了目前面

临的挑战，给出了煤矿设备健康管理与智能维护未来

主要的研究方向。 

1　煤矿设备大数据管理方法研究现状

煤矿设备在掘进、综采、运输、通风、排水等煤矿

生产环节中扮演着重要角色，是确保煤矿高效开采的

前提[12-14]。基于多源感知数据，结合信号处理、故障

预测、人工智能等先进技术，实现煤矿设备运行状态

表达、异常工况识别和关键部件状态预测分析[15-17]。

在矿井复杂条件下，数据的海量性、非线性、高度耦合

性、不真实数据混杂性等导致煤矿设备监测数据难以

处理与利用，煤矿设备大数据多源信息感知、清洗、集

成与存储等关键方法亟待解决。故给出煤矿设备大

数据管理框架，如图 2所示。 

1.1　煤矿设备多源信息感知方法

煤矿设备多源信息感知主要实现数据的采集与

整合利用。当前煤矿设备状态监测数据主要为来自

采掘、排水、提升、通风、运输等过程中产生的振动、

电流、温度、压力、音频、视频信号和图像数据等[18]。

煤矿设备大数据具有体量庞大、种类繁多、增长速度

快、价值密度低、结构差异大等特点，目前，国内相关

的煤矿大数据平台在多源异构数据的治理标准和处

理方式上难以满足煤矿智能化的要求，多源异构大数

据的感知整合成为不可回避的问题[19-20]。在煤矿设

备信息采集方面，随着微机电系统、光学传感、化学传

感、声波传感、光纤传感、电磁传感、射频识别等技术

的发展，振动、声音、射线、巨磁阻、红外热像仪、油

液、视觉相机等感知方式从不同角度增强了煤矿设备

感知信息采集功能[21-23]；同时传感器在适用范围、超

低功耗、高灵敏度、无线传输、宽量程范围、高可靠性、

长使用寿命、自动供电、安装形式等方面不断取得突

破，提升了煤矿设备运行状态的感知能力[23]。在煤矿

设备采集信息整合方面，信息整合所需的硬件系统和

软件系统也取得了发展，硬件系统中各种硬件接口及

通信协议如以太网，光纤，TCP/IP，OPC，RS485，Mod-
bus，CAN，RFID，Zigbee，Lora，WiFi等有线或无线通

信方式得到了充分利用[24]。5G技术具有高速率、低

时延、大连接等优势，为智能化煤矿提供了强大的信

息传输和处理能力。目前，5G+智能矿山和煤矿智能

设备在国内取得了快速发展和普及[25-26]。软件系统

实现了多源异构传感数据的统一编码与标准化管理，

完成了各子系统监测监控、点检巡检、故障诊断、维

护保养、业务派遣等数据的整合及应用[27-28]。尽管煤

矿设备多源信息感知方式发展迅速，但是复杂环境下

煤矿设备数据监测、采集、传输与规范管理等问题仍

然严峻。 

1.2　煤矿设备大数据清洗方法

煤矿设备数据具有噪声干扰严重、缺失值多、价

值密度低等特点，提升复杂条件下煤矿设备数据质量、

实现海量数据的高效清洗和准确利用是煤矿智能化

进程中需要解决的首要问题[29]。曹现刚等[30]建立了

基于 Storm的实时数据清洗平台，有效解决了采煤机

监测数据存在的噪声点和缺失值问题，提升了数据的

有效性。马宏伟等[31]针对煤矿综采设备数据量大、噪

声值多、缺失值多的问题，提出了基于双 MapReduce
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图 2    煤矿设备大数据管理框架

Fig.2    Big data analysis framework of coal mining equipment
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的煤矿设备大数据清洗模型，一定程度上解决了数据

噪声干扰与数据缺失等问题。张元刚等[32]构建了煤

流输送设备在线监测系统，利用大数据技术实现了设

备数据清洗与故障分析。方乾等[20]基于格式内容清

洗、逻辑错误清洗、缺失值清洗、异常值清洗、关联性

验证等方法提高了煤矿核心数据的清洗水平。张长

鲁[33]基于“六何分析法+对数线性模型”分析了煤矿

事故隐患大数据，研究了各隐患之间的相关关系。杜

毅博等[34]研究了数据治理技术与数据可视化技术，利

用实际案例证明了相关技术的有效性，为建设煤矿数

据生态体系提供了参考。王美君等 [35]构建了基于

PDCA循环理论的智能化煤矿数据治理体系，提升了

煤矿大数据治理能力。总之，煤矿设备大数据清洗方

法在数据冗余处理、异常值去除、缺失值补全、时序

关联关系分析等方面均取得了一定的进展，但在复杂

工况下保障数据的完整性、可靠性、稳定性与有效性

方面有待突破。 

1.3　煤矿设备大数据集成及存储方法

煤矿设备大数据集成主要实现煤矿数据的集成

规范，数据统一编码及接口协议，形成工业信息化模

型标准。王国法等[36]构建了适用于煤炭各生产环节

的标准体系框架，为基础技术及平台提供了参考标准。

张建明等[37]整理了煤炭行业相关标准，建立了煤矿设

备接口协议标准，明确了数据集成规范。温亮等[38]编

制了《矿山机电设备通信接口和协议》企业标准，搭建

了基于 EtherNet/IP的煤矿大数据治理平台。王淞等[39]

梳理了大数据集成技术的相关成果，并阐述了数据集

成与处理关键技术的发展情况。滕晓旭等[40]利用数

据抽取−转换−加载方法对异构数据进行集成和综合

管理，解决了矿山设备维修数据集成难题。曹现刚

等[41-42]针对目前煤矿设备监测数据量大、关系复杂、

数据难以利用的现状，搭建了基于 Hadoop的煤矿设

备大数据管理平台，提升了煤矿设备数据管理水平。

李福兴等[43]应用服务器集群技术搭建服务器集群实

现数据统一及集中管理，并采用 Hadoop及 Storm等

大数据框架构建了分布式大数据管理平台，提升了煤

矿数据计算需求。高晶等[44]建立了基于 Hadoop技术

的煤矿大数据分布式集群技术架构，利用 Spark框架

提升了数据的挖掘能力。荣宝等[45]针对实时数据、历

史数据、业务数据的存储需求，分别采用 Redis、post-
gresql、elasticsearch等进行数据存储，采用流计算引

擎 Flink实现数据计算。谭章禄等[46]分析了现有煤矿

大数据平台的不足，给出了未来平台建设的努力方向。

现有煤矿设备大数据集成及存储主流技术特点及应

用情况对比分析，见表 1。总之，煤矿设备大数据集成、

存储及管理相关技术取得了一定成果，但是，行业仍

然缺乏统一的数据采集、接入、传输、编码、描述标准，

需进一步解决煤矿设备数据集成及高效存储难题。
 
 

表 1    煤矿设备大数据集成及存储方法

Table 1    Integration and storage method of big data for coal mine equipment

大数据集成及存储方法 核心组件 技术特点及优势 煤矿应用情况

Hadoop[41-43]

Hive 在结构化数据查询方面具有优势

现场技术较为成熟，大多平台基于Hadoop开发，

并根据应用需求开发核心组件，相关技术已取得

较好推广

MapReduce 可处理海量数据，主要面向批处理

YARN 可较好地为大数据任务分配计算资源

HBase 分布式文件系统，提供毫秒级的实时查询服务

Strom 实时计算框架，可负责流处理

Zookeeper 可负责分布式环境协调

Spark[44]
改进MapReduce 速度极大提升，编程模型覆盖了绝大多数大数据

计算场景

部分平台已经集成该方式，相关技术已取得逐步

推广Spark API

Flink[45]
大数据引擎 批量和流式于一体的计算框架，实时计算，API

模型完善

少数平台已经集成该方式，相关技术亟需探索，

以期进一步推广Flink API
 

综上所述，煤矿设备大数据多源感知、清洗、集成

及存储等关键方法的研究意义重大，为煤矿智慧安全

管控提供数据支撑。但是，煤矿设备大数据统一管理

仍面临挑战。受井下开采环境影响，传感器采集的煤

矿设备数据不可避免存在冗余、丢失、异常等缺陷。

此外，井下人员的人为失误也影响传感器采集数据的

可靠性，降低监测数据的准确性。随着煤矿设备数据

应用需求的不断增加，缺少针对煤矿设备大数据特征

的高效分析平台，煤矿设备大数据蕴含知识挖掘不充

分，监测数据未得到充分利用。煤矿设备大数据管理

仍需解决煤矿设备大数据不均匀采样、不真实数据混

杂、多时间尺度等带来的煤矿设备大数据管理的全新

挑战。因此，如何建立体系性、继承性和前瞻性的煤

矿设备大数据标准体系，推进煤矿设备数据集成规范，
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形成数据统一描述模型，打破数据壁垒，实现数据的

有效融合和共享是亟待解决的问题。 

2　煤矿设备健康状态评估方法研究现状

煤矿设备健康状态评估方法借助各种传感器数

据，利用信号处理、机器学习、深度学习等方法实时评

估设备整机或部件的健康状态，为后续预警、维护决

策提供参考依据，保证设备的可靠性和维修性。煤矿

设备健康状态评估主要包含特征提取、健康状态等级

划分和健康状态评估 3个关键环节。煤矿设备健康

状态评估流程，如图 3所示。 

2.1　煤矿设备特征提取方法

特征提取方法利用统计学和信号处理理论对煤

矿设备状态信息进行表征，以降低数据复杂度，保证

数据信息利用最大化，主要包含数据级特征提取和特

征级特征提取[8,23]。数据级特征提取主要是分析和筛

选设备监测信号的时域、频域、时频域、复杂度熵等

特征。时域特征通常包括均值、标准差、最大值、均

方根、峭度等。频域特征反映了振动能量、主频带位

置和频谱分散程度等信息，包括频域幅值平均值、重

心频率、均方频域、频率方差、频率幅值峭度、歪度、

平方根比率、谱熵、基频、共振峰等。时频域特征提

取可以捕获信号具有高分辨力的重要特征，常用方法

包括小波包分解、短时傅里叶变换、参数功率谱估计

法、梅尔倒谱系数、变分模态分解等。熵对于衡量设

备状态的微弱变化及区分不同的系统状态有一定的

优势，包括信息熵、样本熵、排列熵、模糊熵、近似

熵等。
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图 3    煤矿设备健康状态评估流程

Fig.3    Flow chart of health status assessment of coal mine equipment
 

葛世荣等[47]基于小波阈值和果蝇算法完成多通

道截割声波信号的自适应去噪，提取了用于表征不同

煤岩截割模式的关键特征。张睿等[48]提取了齿轮箱

体振动信号的时域和频域特征，研究了采煤机截深、

牵引速度和煤层硬度等参数对齿轮箱体振动的影响

规律。郝尚清等[49]基于振动信号加速度包络处理，提

取了可用于故障盲源分离的采煤机摇臂轴承振动信

号特征。刘旭南等[50]基于小波包分解求得各故障信

号子带能量值，构建了采煤机煤岩截割的故障特征集。

XU等[51]提出了一种基于集成经验模态分解和改进哈

里斯鹰优化算法的采煤机振动信号去噪方法，并通过

实验验证了特征提取的有效性。LI等[52]利用改进的

自适应噪声完全集成经验模态分解对切割声信号进

行处理得到信号的模态函数，利用子模态复合多尺度

排列熵评估特征值。SI等[53-54]利用熵特征分析了采

煤机摇臂振动信号隐藏信息，研究了复合多尺度排列

熵、多尺度模糊熵等熵特征在实际场景中的表征效果。

LI等[55]提出了一种基于小波包分析的煤矿主风机电
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机滚动轴承振动信号特征提取方法，利用深度森林算

法实现了电机滚动轴承故障识别。ZHANG等[56]采用

变分模态分解对矿井主通风机轴承振动信号进行分

解，利用四阶本征模态函数的多尺度排列熵提取特征

向量。WANG等[57]利用变分模态分解将矿用刮板输

送机齿轮电流信号分解为一系列固有模态函数，提出

了基于局部 Hilbert瞬时能量谱的特征提取方法。张

建公等[58]提出了基于双树复小波变换分解重构和软

阈值降噪滤波的特征提取方法，实现了矿用电动机轴

承外圈微弱故障的及时捕获，有效解决了电机振动信

号频率混叠的问题。HUANG等[59]利用最小熵反卷

积对振动信号进行降噪，并采用小波包分解处理降噪

后的信号以突出故障特征。

特征级特征提取利用特征变换方法得到能清楚

描述煤矿设备监测信号原始特性的特征子集。根据

映射函数类型分成线性特征提取和非线性特征提

取[23]。独立成分分析[60]为线性特征提取的代表方法，

非线性特征提取主要包括核主成分分析[61-62]、等距特

征映射[63]、拉普拉斯变换[64]、局部线性嵌入[65]、局部

切空间排列[66]、局部保持投影[67]、近邻保持投影[68]、

深度学习网络[69]等方法。张一辙[70]提出了一种互补

集合经验模态分解与独立成分分析相结合的煤矿主

扇风机故障特征提取方法，有效消除了信号模态混叠

和残余噪声。吉晓冬[71]提取了掘进机不同运行状态

下振动信号的工作模态特征、时域特征、小波包能量

特征，利用流行学习方法得到降维后的特征集。结合

电流、温度、流量等信号，李宁等[72]利用主成分分析

和局部保持投影提取和融合了采煤机多监测参量特

征，提高了采煤机故障诊断准确度。SI等[73]基于拉普

拉斯得分对不同尺度上所提特征进行重要性排序，构

建了采煤机截割部状态诊断特征集。彭强[74]基于嵌

入学习模型表征煤矿大型机械设备轴承高维数据的

流形结构，提出了稀疏回归特征选择方法。JIANG
等[75]基于时域分析和小波包能量分析得到掘进机振

动信号特征，并基于流形学习和线性判别分析完成故

障特征提取。BAN等[76]采用自适应变分模态分解消

除了带式输送机托辊声信号中的强烈噪声，并通过

Swin Transformer方法提取了声音信号的局部和全局

特征，该方法在高噪声环境下适应性较好。

现有煤矿设备特征提取方法优缺点，见表 2。煤

矿设备特征提取方法研究取得了显著成果，但大多数

方法对煤矿设备运行数据处理效果有限，无法准确捕

捉和提取煤矿设备在复杂场景下的微弱敏感特征，造

成特征的有效性较差。此外，针对煤矿设备数据高维、

非线性、高耦合性等特点的智能特征提取方法研究

不足。
 
 

表 2    煤矿设备特征提取方法对比

Table 2    Comparison of feature extraction methods of coal mine equipment

方法种类 文献 特征提取方法 优点 缺点

数据级

特征提取

[47-49]
时域及频域特征：均值、方差、

均方根值、功率谱特征等

特征提取方式简单、直接，具有明确的的

物理意义

难以深入分析信号细节信息，难以处理时

变或非平稳信号

[50-51,55-59]
时频域特征：小波变换、经验

模态分解、变分模态分解等
抗噪性和提取非线性特征的鲁棒性强

部分方法难以适应非平稳信号，复杂度高，

面对复杂问题需要丰富的参数选择经验

[52-54]
复杂度熵：信息熵、样本熵、

排列熵等

良好解释系统非线性行为及系统响应复杂

性

对于大规模数据计算量及复杂度大，对数

据分布敏感，难以考虑数据关联性

特征级

特征提取

[70]
线性特征提取：独立成分分析

等

数学基础坚实，成分分离能力强，可避免

单一特征的不足

对参数选择敏感，计算复杂度高，结果可

能不唯一

[71-76]

非线性特征提取：核主成分分

析局部线性嵌入、局部保持投

影、深度学习网络等

可实现复杂的非线性映射，融合多特征的

模型考虑因素更全面、评价更客观

对数据依赖性强，部分方法如核主成分分

析等超参数调节困难，近邻保持投影等难

以处理高维非线性数据，深度学习等方法

可解释性较差

 
 

2.2　煤矿设备健康状态等级划分方法

煤矿设备健康状态呈现健康、劣化和故障等多个

状态，合理划分煤矿设备健康状态等级有助于准确描

述设备从健康到故障的退化过程，为后续状态评估提

供数据标签。根据采煤机实际工作情况及专家经验，

曹现刚等[77]将采煤机分为健康、良好、一般、劣化、故

障 5种健康状态。闫向彤等[78]结合专家经验，将采煤

机的健康状态等级划分为健康、良好、一般、劣化、严

重故障 5类。WANG等[79]根据实际运行情况和其他

评价系统，将采煤机划分为普通、过渡、异常、退化 4
种状态模式。王琛等[80]构建了矿井提升机健康状态

评估指标体系，依据相关标准、专家意见和运维经验，

将矿井提升机分为健康、亚健康、警告、故障 4个等

级。陈劭康[81]提出了基于多维时间序列聚类算法的

带式输送机运行工况识别方法，利用效率期望与实际

经验将带式输送机划分为健壮、良好、一般、早期潜
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发故障 4种健康状态。张玉锟[82]建立了掘进系统健

康评价指标体系，依据实际生产中的经验及数据，将

掘进系统划分成健康、亚健康、轻微健康、异常、故

障 5种状态。马旭东等[83]提出了基于健康指标的液

压支架状态分级规则，将液压支架健康状态划分为健

康、亚健康、不健康、病态、严重病态 5个等级。

SOUALHI等[84]基于人工蚁群聚类算法将滚动轴承健

康状态划分为良好、较好、较坏和故障 4个等级。现

有设备健康状态等级划分方法优缺点，见表 3。 

2.3　煤矿设备健康状态评估方法

煤矿设备健康状态评估利用最优特征提取结果

及模式分类原理判别设备状态的好坏程度，分为模型

驱动、知识驱动和数据驱动 3种方法。模型驱动方法

利用失效机理构建统计学模型以表征设备退化过程。

知识驱动方法主要利用专家知识推理，建立设备退化

趋势与健康状态的映射关系。数据驱动方法通过挖

掘设备运行数据蕴含特征，分析设备退化特征与健康

状态的关系。
 
 

表 3    不同健康状态等级划分方法对比

Table 3    Comparison of different methods for classifying health status

方法种类 文献 划分依据 优点 缺点

类型1 [78-82] 实际工作环境和专家经验 模型易建立、模型具有可解释性 引入人为因素，需要丰富的经验

类型2 [83] 等级标度法，指标偏离正常值的程度
模型适用性强、在状态退化规律未知的设备

上具有较好的应用
正常基准难以建立

类型3 [84] 基于运行数据的无监督聚类算法
模型无需引入人工经验，划分方法为无监督

的方法
全生命周期数据难以获取

 

近年来，专家学者在煤矿设备健康状态评估领域

进行了大量研究。丁飞等[85]、王慧等[86]分别分析了液

压支架可靠性，利用可靠性变化规律建立了液压支架

综合评价模型。CHEN等[87]提出了一种融合评价指

标分级标准与改进层次分析法权重分配的顶板稳定

性等级综合评价方法。乔佳伟等[88]利用层次分析法

和优劣解距离法评估煤矿离心泵健康状态，探索了离

心泵叶轮磨损量与健康状态之间的关系。曹现刚等[77]

利用组合赋权法与模糊综合评判方法实现了采煤机

部件及整机的状态评估。在此基础上，曹现刚等[89]提

出了一种融合遗传算法与 BP神经网络的采煤机健康

状态识别方法。XU等[90]基于环境、设施、设备、通风

质量 4个关键指标，利用概率神经网络对煤矿智能通

风系统进行了综合评价。WANG等[79]提出了一种基

于人工免疫算法的采煤机健康状态评估方法，攻克了

采煤机动态健康评估的系统框架、指标选择、健康评

估模型等关键技术。SI等[91]利用模糊神经网络和改

进粒子群算法，提高了采煤机状态预测精度。曹现刚

等[92]利用融合降噪自编码器与改进卷积神经网络的

健康状态评估方法识别采煤机健康状态，一定程度上

解决了采煤机在强噪声干扰下健康状态识别准确度

低的问题。LI等[93]提出了融合对称点模式、局部均

值分解和多尺度卷积核深度卷积神经网络的采煤机

工作模式识别方法，解决了采煤机摇臂振动信号干扰

大、特征选择困难的问题。鲍新平等[94]提出一种基于

长短时记忆神经网络及 Baseline模型的刮板输送机

健康评估方法。杨鑫等[95]探索了刮板输送机多部件

耦合关系，提出了一种融合先验图结构及相似性度量

图结构的刮板输送机健康状态识别方法。针对典型

煤矿复杂设备状态评估，从文献[77,88]可知，建立复杂

系统的层级关系，先评估煤矿设备关键子系统状态再

评估整机状态，可削弱不同层级、系统间的影响，提高

评估结果的有效性。煤矿设备健康状态评估方法的

优缺点分析，见表 4。
综上所述，煤矿设备健康状态评估方法近年来取

得了较大的发展，但多数健康状态评估方法在实际现

场应用中存在一定的条件限制。大多数健康状态评

估方法主要为单部件评估方法，针对多部件相关系统
 

表 4    煤矿设备健康状态评估方法对比

Table 4    Comparison of health status assessment methods for coal mine equipment

方法种类 文献 方法解释 优点 缺点

模型驱动 [85-86]
根据设备运行机理，通过动态建模得到对象

精确的退化数学模型
时空复杂度较低，物理意义清晰 数学解析模型建立的准确性要求较高

知识驱动 [77,87]
以专家知识为基础，通过推理分析，构建退

化特征和健康状态之间的映射关系

模型有良好的可解释性，模型复杂

度低，物理意义清晰

模型精度易受先验知识影响，模型难以

表征设备动态退化过程

数据驱动 [89-95]
根据煤矿设备监测数据构建健康状态和退化

特征间的非线性关系
无需专家知识，模型准确度较高

模型可解释程度低，易受噪声和异常样

本干扰
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及煤矿设备群的健康状态评估方法较少。同时，现有

模型主要以单一服役环境和平稳工况为主，难以揭示

变工况下煤矿设备各部件间的相互耦合关系及作用

机理，难以有效用于强噪声背景和少故障样本等恶劣

条件下的煤矿设备健康状态评估。因此，模型样本标

签制作困难、超参数难以调节、自学习能力弱、可解

释性差、泛化能力低等是亟需解决的问题。 

3　煤矿设备剩余使用寿命预测方法研究现状

煤矿设备剩余使用寿命预测对于提高设备安全、

减少突发故障以及优化维护计划至关重要。如图 4
所示，煤矿设备剩余使用寿命预测方法主要可分为统

计模型方法、物理模型方法、数据驱动方法 3种。
  

统计模型
方法

物理模型
方法

数据驱动
方法

○卷积神经网络
○自注意力机制
○自编码器
○长短期记忆神经网络

○ARIMA模型
○隐马尔可夫模型
○随机回归模型
○比例风险模型

○图神经网络
○Informer模型
○深度置信网络
○……

○离散单元法
○多柔体动力学
○疲劳寿命模型
○累积损伤模型

○Paris模型
○主要失效模式与随
○机过程模型
○……

○指数分布
○Weibull分布
○Gamma分布
○……

图 4    煤矿设备剩余使用寿命方法

Fig.4    Remaining useful life prediction method of coal mine

equipment
 

1)基于统计模型分析的方法：对煤矿设备进行大

量可靠性实验，综合考虑设备运行工况等影响因素，

借助机械设备历史的可靠性数据，利用数理统计知识

构建统计概率函数。罗璇[96]提出了权重自适应的组

合剩余寿命预测方法，实现了采煤机摇臂的寿命预测。

刘晓波[97]分析了采煤机调高泵、换向阀、调高油缸等

故障，利用隐马尔可夫模型实现了采煤机液压系统故

障预测。

2)基于物理模型的方法：根据设备运行机理，通

过动态建模对预测对象参数进行仿真。ZHU等[98]提

出了考虑动态特性和性能退化的采煤机摇臂传动系

统可靠性预测方法，利用有限元法建立了齿轮传动转

子系统的动力学模型，并借助主要失效模式和随机过

程模型分析了齿轮传动转子系统的动态响应特性。

ZHAO等[99]建立了基于离散元法的复杂煤层滚筒切

割耦合模型，分析了煤岩颗粒的运动状态、滚筒的磨

损分布以及工作参数对滚筒磨损的影响。QIN等[100]

分析了随机载荷冲击下截齿的失效过程，研究了截齿

磨损在连续冲击和变速率加速退化下的影响。赵丽

娟等[101]利用离散单元法–多柔体动力学双向耦合技术

在 RecurDyn仿真平台中建立了采煤机摇臂的三维实

体模型，借助疲劳耐久分析模块分析了摇臂壳体的疲

劳寿命。

3)基于数据驱动的方法：以数据特征为输入，不

依赖经验公式及失效机理，构建数据的复杂映射关系。

数据驱动的预测方法已成为重要研究方向。曹现刚

等[102-104]采用卷积神经网络、自注意力机制、自编码

器、长短期记忆神经网络等技术，探索了设备状态随

时间变化的规律。GAO等[105]提出了基于图卷积自编

码器及长短时记忆网络的矿井甲烷浓度预测方法，利

用先验图结构挖掘数据隐藏关系，提高了剩余寿命预

测准确度。LI等[106]和 WANG等[107]分别提出层次注

意力图卷积网络和门控图卷积网络，构建了复杂机械

系统传感器网络的时空图，评估了剩余使用寿命的置

信区间。李晓昆等[108]建立了基于改进相似性的采煤

机轴承剩余使用寿命预测模型，较好的描述了采煤机

轴承退化过程。程泽银[109]构建了基于自编码器与双

向门循环网络的采煤机摇臂关键零部件剩余使用寿

命预测模型，提升了对关键部件的预测准确度。孙永

新[110]提出基于经验模态分解和灰色模型的煤机设备

轴承剩余使用寿命预测方法，以退化指标到达阈值的

时间间隔作为剩余使用寿命预测值，解决了煤机在恶

劣工作环境下预测精度低的问题。DING等[111]构建

了融合自动编码器和深度双向门控循环神经网络的

采煤机摇臂的寿命预测模型，为采煤机预测性维护决

策提供数据支持。张波[112]分析了夹矸坚固性系数、

采煤机牵引速度、滚筒转速和截深等对截割部行星架

疲劳寿命的影响，利用改进的粒子群算法和 BP神经

网络预测了多工况下的行星架寿命。丁华等[113]基于

数字孪生技术和深度学习技术，实现了采煤机健康状

态预测，有效提升了采煤机健康状态管理水平。李红

岩等[114]研究了矿用逆变器功率器件故障预测技术，重

点分析了信号特征提取、开路故障诊断、健康管理、

功率器件寿命预测等方面。

随着数据驱动方法的发展，通过建立具有较好退

化趋势的健康指标，能较好地预测煤矿设备的剩余使

用寿命。彭开香等[115]构建了基于深度置信网络的无

监督健康指标，利用隐马尔可夫模型预测了系统剩余

使用寿命。李天梅等[116]构建了多源传感数据融合的

健康指标，实现了设备剩余使用寿命预测。DUAN
等[117]引入熵等多域特征，利用自注意机制、长短期记

忆网络和改进的卷积自编码器，实现了健康指标的无
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监督构造。TAN等[118]提出了基于健康指标及长短期

记忆网络的煤层气井螺杆泵健康状态评价和预测模

型，准确描绘了螺杆泵健康状态的变化趋势。李曼

等[119]结合了长短期记忆网络及降噪卷积自编码器在

特征提取上的优势，提出了基于二维振动信号的煤矿

旋转机械健康指标构建方法，在强背景噪声中具有较

好的适应能力，能更早地检测到设备早期故障。煤矿

设备不同剩余使用寿命预测方法的优缺点，见表 5。
 
 

表 5    煤矿设备剩余使用寿命预测方法对比

Table 5    Comparison of remaining useful life prediction methods for coal mine equipment

方法种类 文献 方法解释 优点 缺点

统计模型方法 [96−97]
通过建立基于经验或知识的统计模型来实

现设备的寿命预测

不依赖于物理模型，根据观测值拟合退化

趋势并外推
需要大量样本，模型计算量大

物理模型方法 [98−101]
根据设备运行机理，通过动态建模得到对

象精确的退化数学模型
物理意义清晰，有良好的可解释性

退化机理分析困难，难以建立

精确的数学模型

数据驱动方法 [102−113]
通过学习现有观测数据的退化信息来构建

预测模型

无需专家知识及经验，自适应抽取高层特

征，对复杂非线性数据的表达能力更强

模型缺乏明确物理解释，模型

易受工况环境影响
 

综上所述，煤矿设备剩余使用寿命预测方法已得

到初步发展，预测结果保障了煤矿设备的安全、高效

运行，为维护任务提供了数据基础。但是，建立多因

素影响下煤矿设备剩余使用寿命预测模型具有挑战，

获取、收集、整理煤矿设备全生命周期完整及准确的

数据具有难度，同时当前有关煤矿设备剩余使用寿命

预测的研究大多聚焦于平稳工况下单个设备或系统

组件的单一失效模式，忽略了由于变工况和多种失效

模式耦合作用下多部件系统的剩余寿命预测方法。

现有模型难以综合考虑使用条件、工况条件、环境因

素、材料衰老、时空关系等因素在设备退化过程中的

影响。因此，如何得到多因素影响下煤矿设备健康状

态退化机理数据表征，建立数模联动的设备剩余使用

寿命退化模型，提高剩余使用寿命预测精度是亟待解

决的问题。 

4　煤矿设备智能维护决策方法研究现状

煤矿设备智能维护模型可为维修人员和管理人

员制定科学的维护计划，实时提供设备的维护状态和

维护建议，对提高煤炭生产效率意义重大。煤矿设备

维护一般包括事后维护、预防性维护、状态维护和预

测性维护，随着煤矿设备维护的高可靠性需求提升，

预测性维护逐渐成为热点话题。煤矿设备预测性维

护流程一般包括：① 基于物理退化模型或数据驱动的

预测模型确定设备的状态信息；② 考虑维修成本、故

障成本、维护资源等多种因素，建立设备的维护模型；

③ 基于智能优化算法等对模型进行最优化求解；④ 根
据最优解结果确定最优的设备维护方案。煤矿设备

预测性维护决策流程，如图 5所示。

国内外学者研究了煤矿设备预防性维护、状态维

护和预测性维护等方法，取得了一定的成果。HO-
SEINIE等[120]针对采煤机切割臂的故障维护，利用煤

矿数据进行故障和可靠性分析，提出了基于分布函数

和成本参数的最优预防性维护间隔求解方法。JIU[121]

研究了预防性维护、生产和交付的联合问题，解决了

何时执行预防性维护以及如何在每个阶段管理煤炭

的生产和交付等问题，以期达到最小的预期总成本。

JIU等[122]提出基于鲁棒优化的两阶段方法，解决了需

求不确定性下预防性维护与煤炭生产的问题。

FLOREA等[123]通过刮板输送机收集的数据确定其关

键部件的可靠性和可维护性、失效模式及其影响的参

数，简化了对结果的解释，以期降低维护成本。侯鹏

飞等[124]以煤矿大型机电设备为研究对象，采用基于状

态的维护思想，提出了煤矿机电设备维护策略方法。

ZHANG等[125]基于状态维护策略，建立了具有故障依

赖性的维护决策方法。在预测性维护研究方面，CAO
等[126]建立了基于非线性维纳过程的煤矿设备随机退

化模型，推导出设备的剩余使用寿命分布，利用剩余

使用寿命预测结果建立了以长期成本率最低为目标

的维修决策模型。DING[111]构建了基于深度双向门控

网络的采煤机关键部件寿命预测模型，提出了一种监

测数据定性和定量分析的预测维修方法。TON等[127]

提出了一种通用预测性维护过程模型，以结构化的方

式来部署预测性维护解决方案。针对多部件维护问

题，CAO等[128]提出了基于煤矿安全成本和维修成本

的决策优化模型。此外，CAO等[129]针对复杂化的大

型机械设备的维修与生产之间的矛盾，提出了一种基

于生产计划和维修的联合决策模型，以总成本最小化

为决策目标，采用混合遗传鲸优化算法求解设备生产

计划与维修方案，解决了生产与维修之间的矛盾。分

析对比了现有煤矿设备智能维护决策方法优缺点，见

表 6。
综上所述，提升煤矿设备智能维护决策水平对于

保障设备稳定、高效运行，降低维护成本具有重要的
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意义。但是，现有煤炭设备智能维护模型的研究对象

多集中于单个设备或者相互独立的简单系统，多数方

法停留在二态设备上，对具有多健康状态的煤矿设备

群维护方法研究不足。在煤矿设备预测性维护相关

研究中，将设备健康状态、剩余使用寿命等作为维护

决策依据的研究较少。同时，煤矿生产系统中各设备

间具有复杂的相互关系，如何在考虑设备停机损失、

维修费用等基础上，建立煤矿设备多目标智能维护决

策模型具有挑战。除此之外，煤矿设备受生产计划与

维护活动冲突所造成的维护不合理的问题也亟需解决。

近年来，专家学者围绕煤矿设备大数据管理、健

康状态评估、剩余使用寿命预测、智能维护决策等方

法进行了积极的探索，开发了煤矿设备健康管理与智

能维护系统，实现了对煤矿设备在线监测、故障超前

预警、健康状态评估、故障趋势预测、远程故障智能

诊断、预测性维护及远程决策等功能，部分功能界面

如图 6所示。通过文献[130-137]可知，现有大多数煤

矿设备管理系统关注点仍然停留在数据处理、在线监
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图 5    煤矿设备预测性维护决策流程

Fig.5    Flow chart of predictive maintenance for coal mine equipment
 

表 6    煤矿设备智能维护决策方法对比

Table 6    Comparison of remaining useful life prediction methods for coal mine equipment

方法种类 文献 方法解释 优点 缺点

预防性维护 [120−122]
在设备出现故障之前进行维护性工

作，以防止可能的故障和损坏

通过定期检查和维护设备，有助于及时发

现并解决潜在问题

无法在设备故障时及时采取维护方式，

会导致过度维护或维护不足的问题

状态维护 [123−125]
基于设备的实时状态和监测数据来

确定维护时机的策略

能够及时发现设备问题，避免设备由于故

障而导致的生产中断和损失

对于数据的依赖程度较高，当样本数据

不足或者不确定时结果较差，需要进行

复杂的数据处理和分析

预测性维护 [126−127]
通过学习现有观测数据的退化信息

来构建预测模型

提前发现潜在问题并进行提前维护，减少

因突发故障造成的生产中断，提高决策的

科学性和准确性

对于数据的依赖程度较高，需要进行复

杂的数据处理和分析，系统集成难度大
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测、故障预警及诊断等方面，针对于煤矿设备健康状

态评估、寿命预测、智能维护决策的研究目前大多仍

停留在理论阶段，与实际应用还有一定距离。目前而

言，开发功能齐全的健康管理与智能维护系统难度较

大，将相关技术应用于煤矿生产实际具有挑战。健康

管理与智能维护相关技术应用难以克服数据质量、算

法集成、人机交互、远程运维及管理、部署成本等多

方面带来的挑战，如何有效提升数据质量，基于先进

的系统开发技术标准架构，确保系统各个组件的兼容

性、稳定性和可靠性是值得深思的问题。
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图 6    煤矿设备健康管理与智能维护系统应用

Fig.6    Application of intelligent maintenance and health management system for coal mine equipment
 
 

5　煤矿设备健康管理与智能维护展望

煤矿设备健康管理与智能维护需要不断完善大

数据管理及分析平台，创新设备管理及维护模式，为

煤矿设备全寿命周期监测、服役状态识别、运维管理

及维护提供理论基础及技术支撑。未来研究方向将

主要体现在煤矿设备大数据管理方法、时变工况下煤

矿设备健康状态评估方法、多因素影响下煤矿设备剩

余寿命预测方法、煤矿设备多目标智能维护决策方法

等方面。煤矿设备健康管理与智能维护展望，如图 7

所示。

1)煤矿设备大数据管理是打破数据壁垒、建设数

据底座、实现数据共享的前提，需要在国家引领、行业

推动、企业落实下，不断完善煤矿设备大数据管理及

分析平台。提升煤矿设备状态信息感知可靠性及稳

定性水平，研究煤矿大数据来源多样、格式多样、标准

多样、数据结构多样等问题对数据可用性的影响，形

成统一的煤矿设备大数据接口标准，建立基于语义描

述的数据描述模型，构建煤矿设备群多源异构数据分

布式管理框架，实现行业数据共享，为煤矿设备健康

管理与智能维护提供基础数据。破解高并发环境下

煤矿设备群多源异构数据传输、清洗及存储难题，研

究煤矿设备大数据的快速查询及检索方法，提高数据

的实用性。
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2)研究时变工况下具有非线性、稳定性好、特征

表达能力强、泛化能力高的煤矿设备健康状态评估方

法，合理重视新技术如机器学习、深度学习等在实际

场景中的应用效果。探索基于多模态信息耦合的煤

矿设备监测信号表达新方式，研究基于深度学习模型

的特征提取、选择及融合新方法，实现数据与特征的

复杂非线性映射，保证最优信息的有效提取。研究时

变工况下多部件复杂相关系统及煤矿设备群的健康

评估状态评估方法，攻克强噪声影响、故障样本不足

等导致的煤矿设备健康状态难以评估的行业痛点问

题，加强迁移学习[138-139]、域自适应学习[140]、时空图神

经网络 [141-142]、降噪自编码器 [143]、 Transformer模
型[144]、生成对抗网络[145]等新算法在煤矿设备健康装

评估领域中的研究及应用开发，实现在时变工况、复

杂条件下煤矿设备健康状态自适应评估。在满足煤

矿设备健康状态评估精度的前提下，提升模型的可解

释能力，增强模型的可信度、透明度和可用性。

3)研究多种失效模式下煤矿设备子系统及零部

件间的耦合关系，探索设备退化规律，建立时变工况

下多部件系统及煤矿设备群的设备剩余使用寿命预

测方法。针对预测方法中退化信息难提取、长时间序

列特征难学习、跨时非线性依赖关系难表达等问题，

引入深度时空图神经网络[146-147]、Transformer[148-149]、
LSTNet框架[150]、DeepGI框架[151-152]等深度学习模型，

提升模型预测精度。针对预测结果不确定性问题，研

究煤矿设备剩余使用寿命预测不确定度置信区间评

价方法。考虑煤矿设备的特殊性，还应继续对统计模

型、物理模型的剩余使用寿命预测方法进行研究，探

索煤矿设备关键部件结构的非线性、载荷的时变性、

故障的多元化及耦合性对于失效形式的影响，建立数

模联动的煤矿设备剩余使用寿命预测方法。基于煤

矿设备健康状态评估及剩余使用寿命结果，针对煤炭

开采过程特点，建立基于多健康状态的煤矿设备群预

测性维护模型，研究基于剩余使用寿命预测的煤矿设

备维护决策方法，探索煤矿设备剩余使用寿命与维护

过程的制约关系，降低设备突发故障造成的损失及综

采设备群维修成本。研究基于维护安全与维护成本

的综采设备群机会维护决策优化方法，解决综采设备

停机费用高、维修程度不合理等问题。构建面向生产

计划与维护活动的煤矿设备群多目标联合决策优化

模型，解决煤炭生产过程中维护活动与生产活动矛盾

冲突、维护效率低等问题。引入新的智能式启发算法

实现煤矿设备群维护决策问题的高效、准确求解。

4)研发煤矿设备健康管理与智能维护系统，推进

煤矿设备健康管理及智能维护关键方法在煤矿生产

中的工程应用，实现煤矿设备安全、可靠、常态化运行。

整合煤矿设备监测数据、特征数据、状态数据、维护

数据等数据资源，研发集成煤矿设备在线监测、故障

超前预警、健康状态评估、故障趋势预测、远程故障

智能诊断、预测性维护及远程决策等功能于一体的煤

矿设备健康管理与智能维护算法库，提升对煤矿设备

数据的分析和决策能力。建立面向对象的煤矿设备

健康管理与智能维护技术标准架构，研发基于云计算、

云存储、大数据、物联网、人工智能、5G、移动端应用

等技术的煤矿设备健康管理及智能维护系统，基于数

字孪生、VR、AR、MR、B/S等开发模式[153-155]，实现

煤矿设备的可视化管理和远程操作，提升煤矿设备全

寿命周期健康管理及智能维护水平。 

6　结　　语

1)通过技术革新，有效避免煤矿设备在开采过程

中出现重大安全事故、延长设备使用寿命、降低设备
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图 7    煤矿设备健康管理与智能维护展望

Fig.7    Prospects of health management and intelligent maintenance for coal mine equipment
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维护成本是促进煤炭行业向绿色、智能、高效转型的

关键。阐释了煤矿设备全寿命周期的健康管理与智

能维护内涵，给出了煤矿设备全生命周期健康管理与

智能维护框架，明确了数据管理层、数据分析处理层

和应用服务层的核心内容，可为煤矿企业提供整体解

决方案。

2)深入分析了煤矿设备健康管理与智能维护关

键方法，主要包括：① 分析了煤矿设备大数据管理关

键方法的发展现状，指出了实现煤矿设备大数据管理

规范标准、统一描述模型，数据融合和共享存在的挑

战。② 探讨了时变工况下煤矿设备健康状态评估关

键方法，解释了不同方法的内在含义，分析了方法的

优缺点，总结了煤矿设备健康状态评估面临的难题，

为相关研究提供了理论基础及技术支撑。③ 对比分

析了不同煤矿设备剩余使用寿命预测方法的优缺点，

指出了复杂因素下煤矿设备剩余使用寿命方法存在

的问题。④ 阐明了煤矿设备预测性维护决策主要步

骤，分析了煤矿设备智能维护方法最新研究成果及优

缺点，探讨了煤矿设备群多目标智能维护决策技术的

不足，归纳了煤矿设备健康管理与智能维护面临的

挑战。

3)未来需要在国家引领、行业推动、企业落实下，

攻克煤矿设备大数据管理及分析难题，实现数据共享

及利用；研究时变工况下煤矿设备健康状态评估方法，

提升模型在实际应用中的稳定性及泛化能力；探索多

种失效模式下煤矿设备状态退化规律，建立剩余使用

寿命预测模型，构建煤矿设备群智能维护决策模型，

降低设备故障及维修成本；完成煤矿设备健康管理及

智能维护多源数据整合，集成研发健康管理与智能维

护算法库，开发功能齐全的应用服务系统，提升煤矿

设备全寿命周期健康管理及智能维护水平。“十四五”

及未来长时间内，应在国家、行业、企业战略部署下、

相关同仁的协同合作下，坚持目标导向和问题导向，

不断探索及创新煤矿设备全寿命周期健康管理与智

能维护新理论、新方法和新技术，促进煤炭工业转型

升级和高质量发展。
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