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Abstract: Under the condition of unconformable deposition of the Cretaceous Zhidan Group huge thick strata in the Inner
Mongolia-Shanxi mining area, frequent occurrence of strong mine earthquake (SME) during deep mining, resulting in
tremors at the surface, has severely constrained efficient production at the area. In order to solve the problem of inaccurate
source information and unclear stress triggering mechanism, which makes it difficult to prevent and control SME, the
working face of a mine in the area where SME occurred frequently is used as a background for the study, based on prelim-
inary detection of stratigraphic rock movement characteristics, the principal component analysis (PCA) was applied to ex-
tract the effective components of waveforms, the hybrid moment tensor inversion (HMTTI) are used to solve focal mechan-
ism of SME, stress inversion model modified, and stress inversion algorithm optimised, based on the algorithm, solved the
distribution characteristics of the stress field before and after the occurrence of SME, introduced instability coefficients to
evaluate the stability of the overburden, and analysed the stress triggering mechanism of SME. The results show that the
PCA can extract the key information of complex waveforms, and applied to the HMTI can significantly reduce the error
between the theoretical and observed amplitudes of waveforms, and ensure the accuracy of the source rupture information
used for stress inversion. The improved algorithm meets the requirements of typical tension, compression and composite
rupture source, and can reduce the error from 60% to less than 20%, which verifies the reasonableness of the algorithm ap-
plied to the complex rupture source stress field inversion in coal mine. Before the occurrence of SME, the maximum prin-
cipal stress increases significantly compared with other principal stresses, and the direction is approximately vertical, and
the deflection of the maximum principal stress plays a controlling role in inducing SME, the fracture of the huge thick
strata interacts with the changes in the direction and magnitude of the principal stress, and under the effect of vertical uni-
axial compression of the maximum principal stress, the huge thick strata moves violently and instantaneously releases its
elastic energy, resulting in the occurrence of SME. The conclusions of the study can provide theoretical support for redu-

cing the frequency of SME by weakening the huge thick strata in terms of stress regulation.
Key words: mine earthquake; rupture information; huge thick strata; stress inversion; trigger mechanism
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