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Meso-macro analysis of microwave-assisted double-indenter
impact on rock-like materials

WANG Peng, YUE Zhongwen, XU Shengnan, GAO Dan, REN Meng, LI Akang, LIU Weijun
(School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

Abstract: Given the constraints on explosives and in response to the national “dual carbon” strategic goals, a new method
of microwave-assisted impact fragmentation of rock-like materials has broad prospects in hard-rock tunneling, concrete
structure demolition, and other projects due to its environmental friendliness and strong rock-breaking capability.
However, its internal mechanism remains unclear. This study takes grouted concrete as the research object and relies on
the established macroscopic dual-indenter synchronous impact experimental system (DHPB) and mesoscopic scanning

electron microscopy (SEM). Through theoretical derivation and experimental verification, it explores the variation laws of
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macro-specific energy consumption and meso-damage of concrete specimens under dual-indenter synchronous impact
with different microwave radiation times, establishing a quantitative functional relationship between macroscopic specific
energy consumption attenuation degree and mesoscopic damage mediated by critical strain energy density. The results
show that microwave radiation-induced degradation of concrete mechanical properties exhibits threshold characteristics.
When the strain energy density absorbed by the concrete is less than the strain energy density required for the initiation of
crack propagation, there is essentially no damage within the concrete specimen. However, as the absorbed strain energy
density increases, the damage to the specimen accumulates nearly linearly with the strain energy density. The mesoscopic
crack propagation within the concrete specimen has instantaneous characteristics. With the increase of microwave radi-
ation time, it first expands statically and then transitions to dynamic expansion. During the dynamic expansion process, the
instantaneous release of a large amount of energy can cause the entire specimen to instantaneously break into small pieces.
Microwave radiation can significantly affect the failure mode of concrete specimens under dual-indenter synchronous im-
pact. Without microwave radiation, the final fracture path of the concrete specimen is basically consistent with the direc-
tion of the line connecting the dual indenters. With microwave radiation, the final fracture path forms a larger angle with
the direction of the line connecting the dual indenters, and multiple macroscopic cracks may occur. The maximum value of
macroscopic specific energy consumption of concrete specimens under microwave radiation is 0.69, and the correspond-
ing mesoscopic damage is 0.68, both of which are basically consistent. This means that the increase in mesoscopic crack
length and quantity can quantitatively reduce macroscopic specific energy consumption, revealing the internal mechanism
by which microwave radiation weakens the impact resistance of rock-like materials. The research results provide a sci-

entific basis for the application of microwave-assisted mechanical impact in engineering.
Key words: microwave assisted; impact grinding; attenuation of specific energy consumption; damage; critical strain
energy density
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Fig.1 A dual-hydraulic hammers and schematic diagram of microwave-assisted mechanical impact demolition of concrete structures
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Table 1 Basic mechanical parameters of materials used in tests

s PP /GPa BARIHLSRE/MPa

(kg - m )

B/ - kg - KT WIREEEIEm S Do w

Concrete 21.76 538 2860

970 1011 005  1.19x107°

B4 3 FiR.

M 3 e FnsEprnT Lk BR: Bl i HR S e
()3, TEE a1 3R R R S e, TR R
SEHE RTINS T R S ) Ry 400 s B, VR 4
A S B AR B4R, TR] Ot 39 456 198 5 B A S5 B ] Sy
300 so Sy 4, A JE SCAN oM, TR EE S e A s
[ /NF Mc(175 s) B, IREE L NHHAA KT . Wi,
o 235 BRI R S EF ] 235510 0 s(M) 150 s(M).

270 +

240 |
210

£150 -

60| A i

MM M, Mi ‘
ol 1 1 1 ! i 1 1 1
0 50 100 150 200 250 300 350 400

t/s
B3 RS R IR TR S o A S I T Y O 2R

Fig.3 Relationship between average surface temperature of

concrete specimens microwave radiation time

200 s(M,) F1 300 s(M;).
2.2 DHPB 32I%

P 1A 1A A A 1) 0 2 K B /N T T AT
(R B, TP 2 ) 4RI R R s N T A, T SR
TEEL 4 B IEAT R 50 (HPB) A ASTFFFITR 88 114
FE A A — o L o] AR 0 OB Sk 2he i, T AT ST SR
VT B A [ 2 o BB 4 A DR R0 U 3k
[ whili 5256 2 48 (DHPB), {11& 4a Fifs .

DHPB £ 44 & thili il e . by o AR
FFo SR SRBE E (H Sk B . R, k) [T AR 24
BN JPC AL . BT BIFE, vhili 30, RSk IC
FUE LA 45 SN HI A, Hrh A ER N 50 mm,
PP 210 GPa, AN 5180 my/s; N4 HH 4R
B, B SR IE R ) LA R B [ . 45 5
FLA B30 0 i e B AN AR R 8 0, Hebihiom
U A58 25 23 R 1t 600 MPa Fl 355 MPa., X5,
B 2 AL AR R G i A A SR RIS SR AT o ] B 3 oz
BTSN AR e S iR AR 3 5 R [ AE A
TR 30 T 00 Py 5, 8 P 2 Py g o oL VR B R,
PIBRIIE 2 A5 EAR AT AT TCAE B g 4 o il ns, i
SR T I v o R AR — A Y A L R e
Ji , e BT I R S s QAR e Sk B ™ o, MR

N

(b) T 2 S RO Sk B
Bl 4 BURK[R D ik R 48 (DHPB) Bl

Fig.4 Concrete -breaking experimental system under double-indenter synchronous impact (DHPB) and the specimens

o
9
.
.
\
0
o
.
. )
s ‘
"
a
"

I 5 7R S %

(c) AR FE iRt sk



2114 # %

F #®

2025 4F55 50 4

Pk

TR OB S e AL FE 2 A~ J1 A 25° i U A
HEIE RSk . Sk iR e . R4, aniEl 4b s . ki HE
28 10 mm, KB 100 mm; &K EE FiLTT 64
(BB R 14mm B [BEIAE AR, GRS SE IR Sk (Al FEAE
14~70 mm P AEfk; Sk I 38 AR SLABAT 45 580 il
1, FFaead VAT, DLORIE /2 0% 8 A B RN s R4
H AR BT RIAE, IR RS R AR IE R T, DL SEI R Y
[T o AT, I R JH T Sk G 32 [ 78 AT
I B — v, FFa o T A 7 =06 2 AN RSk B e FE
BRI

K5, SR H DHPB ZR G0 XA [7] e 8 Sl %)
TR EE O AT G PR e, 202 1k, 4o

El dc FioR . ARFESCHR43]RT %0, SR F DHPB R4 npif
TREE T F Y A R Bl 28 mm, R IREG PR 2 4>
JE kA3 A [ 7E & 4b s 2 FE S ASRAE S S35,
P Tl s R R R AR A T IR, BB T AL
FEIREE T N RIS 5 A i, Rtk DHPB 350 T i
WEREAARTR v 48 B R R AR R . 2542 (1) A0
FEL IS T A5 X L ) L RE At A5 SR 2. K2
TR G5 2R T s T L IR B | ) A R B
PR SR S A ds B, LA My-62-1-2 {5l M, ik
B R 200 s; 62 il A BE S 62 mm; 1 55 13k
62 mm JERE, 2 5 2 kb .
2.3 SEM iz

VB FR S AS R R] 0 s(M,). 150 s(M;). 200 s

®2 AKRERGE DHPB KB AL THIXIRER

Table 2 Results and effects of concrete specimens by experimental system under double-indenter synchronous impact (DHPB)

RN et 2 JE KIS /mm et v/(m - s G112 Eque/(N * m) Hehgkea (kI - m™)
M-42-1-1 First 28 9.25 88.53 49.18
My-42-2-1 First 4 7.59 96.09

My-42-2-2 Cyclic 4 9.12 105.43 111.96
M-42-3-1 First 42 10.29 116.63 64.79
M-42-4-1 First 42 9.53 97.71 54.28
My42-5-1 First 28 9.89 101.58 56.43
My-42-6-1 First 42 7.50 89.08

M(-42-6-2 Cyclic 42 7.87 99.17 104.58
M-42-7-1 First 28 7.32 95.12

My42-7-2 Cyclic 28 7.56 98.66 107.66
M,-42-1-1 First 28 9.33 98.53 54.78
M,-42-2-1 First 28 8.70 89.66

M,-42-2-2 Cyclic 28 8.29 93.48 101.74
My-42-1-1 First 28 9.07 90.27 50.85
My-42-2-1 First 42 7.53 88.43

My42-2-2 Cyclic 42 7.22 78.28 99.23
M3-42-1-1 First 42 8.78 83.43

M3-42-1-2 Cyclic 4 8.86 85.88 100.78
My-42-2-1 First 28 8.92 70.43 41.92
My-52-1-1 First 28 8.74 89.39

M(-52-1-2 Cyclic 28 8.82 96.16 89.21
My-52-2-1 First 28 7.31 102.87

M(-52-2-2 Cyelic 28 7.25 98.73 96.92
M(-52-3-1 First 42 7.36 90.95

M(-52-3-2 Cyclic 42 7.53 95.13 89.46
M;-52-1-1 First 28 7.66 102.41
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Fig.7 Variations in average specific energy consumption and its attenuation in concrete specimens with microwave irradiation time
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Fig.8 SEM scanning analysis results of concrete samples
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Fig.10 Variation of concrete crack propagation and damage with strain energy density
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