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Abstract: Large-scale commercial development of shale gas has been achieved in China, and in the future, a significant
number of depleted shale gas horizontal wells could provide substantial CO, sequestration capacity. However, the geolo-
gical characteristics of shale gas reservoirs significantly differ from those of conventional sequestration geological bodies,
such as deep saline aquifers, conventional oil and gas reservoirs. The mechanisms of CO, sealing, trapping, and the meth-
ods for assessing sequestration potential in shale formations require further study. Based on the geological characteristics

of shale gas reservoirs, this paper analyzes the mechanisms of CO, sealing and trapping within these reservoirs. CO, geo-
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sequestration can be regarded as the reverse process of shale gas production, with the main storage space being the pore
and fracture space originally occupied by the shale gas produced. Based on the premise of stimulated reservoir volume
(SRV) as the CO, storage space, combined with the effective volume method and “free-adsorption-dissolution” multiple
storage mechanism, and with cap rock safety as the constraint condition, a shale gas reservoir CO, storage potential evalu-
ation model was established. According the current state of shale gas development in China, the CO, sequestration poten-
tial of China’s future depleted shale gas reservoirs’ was preliminarily evaluated. The results indicate that, vertically, capil-
lary sealing is the primary mechanism of shale caprock. Horizontally, the SRV is surrounded by unfractured dense shale,
forming an effective barrier to lateral CO, migration. Based on these mechanisms and general experiences from shale gas
exploration and development in China, the maximum CO, sequestration potential within the SRV controlled by a single
horizontal well is estimated to be 712 000 tons. The proportion of free, adsorption, and dissolution storage mechanism is
41.82%, 56.79%, and 1.39%, respectively. The CO, sequestration potential of existing shale gas wells in China is prelim-

inarily estimated at 1.502 billion tons, with an additional potential of 12.104 billion tons from future shale gas wells.
Key words: CO, geological storage; shale gas reservoir; sealing mechanism; trapping mechanism; storage potential
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