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摘　要：受井下复杂空间环境和不均匀人造光源影响，井下视觉设备采集的图像易呈现整体或部分

区域光线不足、图像内容可见度差的问题。对于井下低光照图像的增强，现有图像增强方法的结

果易出现对比度差以及部分区域过曝和欠曝的问题。基于此，提出一种基于结构和纹理感知的井

下低光照自监督图像增强方法，以摆脱训练时对配对的井下低光照/正常光照图像的依赖。首先，

为产生分段平滑的光照图，设计了一种自监督结构和纹理感知的光照估计网络，根据自监督训练

损失保留场景的边缘结构并平滑纹理细节。为了深入挖掘低光照图像中的局部纹理特征和全局结

构特征来提高光照估计网络的性能，在光照估计网络中引入了局部−全局感知模块。该模块利用卷

积操作中较小感受也能够捕获局部特征的能力以及视觉 Transformer 的自注意力机制能够实现全局

信息交互的特性来实现低光照图像中局部和全局特征的提取。其次，为了实现自监督学习的训练

方式，针对光照图分段平滑的特性，采用了一种结构感知的平滑损失。为了进一步细化光照估计

网络产生的光照图，使其具有合理的亮度和对比度，引入了伪标签图像生成器来合成具有良好对

比度和亮度的伪标签图像。通过重建损失约束，增强图像与伪标签图像之间亮度和对比度之间的

一致性，从而间接约束光照图。在多个公开的基准数据集和井下真实场景的低光照图像数据集上

进行主观和客观评价的试验结果表明：该方法具有较好的低光照图像增强效果，在面对井下场景

的低光照图像时，该方法也具有良好的泛化性能。
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Abstract: Due to the complex spatial environment and uneven artificial lighting underground, images captured by under-
ground visual equipment often suffer from insufficient overall or partial lighting and poor visibility of image content. Ex-
isting image enhancement methods for low-light underground images often result in poor contrast and issues with overex-
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posure and underexposure in certain areas. Within this article, we propose a self-supervised image enhancement method
for  low-light  underground  conditions  based  on  structural  and  texture  perception,  aiming  to  alleviate  the  dependence  on
paired  low-light/normal-light  images  during  training.  Firstly,  to  generate  smoothly  segmented  illumination  maps,  we
design a self-supervised structural and texture-aware illumination estimation network, which preserves scene edge struc-
tures  and  smooths  texture  details  based  on  self-supervised  training  losses.  To  further  exploit  local  texture  features  and
global structural features in low-light images to improve the performance of the illumination estimation network, we intro-
duce a local-global perception module into the illumination estimation network. This module leverages the ability of con-
volutional operations with small receptive fields to capture local features and the self-attention mechanism of visual trans-
formers  to  facilitate  global  information  interaction,  thus  extracting  local  and  global  features  from  low-light  images.
Secondly,  to  facilitate  self-supervised  learning,  we  adopt  a  structure-aware  smoothness  loss  considering  the  segmented
smoothness property of illumination maps. Finally, to refine the illumination maps generated by the illumination estima-
tion network for reasonable brightness and contrast, we introduce a pseudo-label image generator to synthesize pseudo-la-
bel images with good contrast and brightness. By constraining the consistency between brightness and contrast of the en-
hanced images and pseudo-label images through reconstruction loss, we indirectly constrain the illumination maps. Experi-
mental results on multiple public benchmark datasets and a dataset of low-light images in real underground scenes demon-
strate the effectiveness of our method in enhancing low-light images, as well as its good generalization performance when
faced with low-light images in underground scenarios.
Key  words: low-light  images； self-supervision； image  enhancement； illumination  estimation  network； local-global
aware
  

0　引　　言

 “智慧矿山”的提出，为新一代人工智能技术与能

源矿山的深度融合以及构建无人化、智能化绿色矿山

提供了契机和有力支撑[1]。煤矿井下光照条件差，导

致成像设备捕获的图像存在整体或部分区域光线不

足的问题，进而导致细节信息损失严重，图像内容可

见度差。然而，完成煤矿井下关键任务 (如危险行为

识别、监控视频分析和炮孔检测识别)都依赖具有良

好对比度和亮度的图像作为输入[2]。因此，煤矿井下

低光照图像增强作为底层计算机视觉任务对提升智

能化设备的可靠性具有重要意义。

目前，研究人员提出了大量低光照图像增强的相

关工作[3-4]，主要分为基于非学习的低光图像增强方法

和基于学习的低光图像增强方法。基于非学习的图

像增强方法是基于先验知识设计相应的方法，主要包

括直方图均衡化、引导滤波的方法和基于 Retinex理

论的方法。直方图均衡化[5-7]通过调整图像中每个灰

度级的像素数量来提高图像的对比度和亮度。引导

滤波的方法有多种，龚云等[8]提出结合 HSV空间和加

权分布自适应 Gamma校正的同态滤波算法，该方法

在提高图像亮度的同时，有效保留了煤矿井下环境图

像的细节信息。张立亚等[9]在 HSV空间变换条件下

将改进双边滤波算法和多尺度 Retinex算法[10-11]进行

融合，实现了对煤矿井下模糊图像的增强。Retinex理

论认为，拍摄的图像由照度分量和反射分量共同决定，

反射分量由物体本身的反射性质决定，照度分量则决

定了图像的亮度和对比度。Retinex分解后调整照度

分量的动态范围，可以实现低光图像增强。最近，

GUO等 [12]基于 Retinex理论提出了 LIME方法。通

过选取输入图像中各像素通道的最大值构建初始光

照图，再利用结构化先验知识对初始光照图进行细化，

最后基于 Retinex理论变换将反射图作为增强结果。

虽然 LIME方法采用了 Gamma校正的方式对细化后

的光照图进行了亮度提升，但面对不同的场景需要调

整参数设置，参数设置不当会产生过曝光现象。

基于学习的低光照图像增强方法通过学习图像

的潜在特征，并利用这些特征来增强图像，避免了依

据经验调整参数所带来的问题。WEI等[13]基于 Ret-
inex理论提出了用于低光照图像增强的深度学习模

型 RetinexNet。该模型设计了 2个网络结构，分别实

现了照度分量和反射分量的分解阶段，照度分量和反

射分量的调整阶段以及照度分量和反射分量的重建

阶段。作为将 Retinex理论嵌入深度学习网络的首次

尝试，该方法有效提高了图像的对比度和亮度，恢复

了低光照图像的细节内容，但存在对训练数据依赖性

大的问题，且容易产生过冲伪影效果。为解决这一问

题，YANG等[14]为 RetinexNet添加了新的约束，进一

步优化了 RetinexNet的结构，获得了比 RetinexNet更
好的结果。然而优化的 RetinexNet结构中的可训练
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参数少，模型性能受限。ZHANG等[15]提出了由 3个

子网络组成的 KinD算法，分别用于图像分解、反射

分量纠正和照度分量调整，通过对分量进行纠正来得

到更清晰的增强图像。但该方法在网络分解时容易

造成反射分量和照度分量之间的不一致性，从而产生

伪影。为解决 KinD增强结果中的视觉伪影，ZHANG
等 [16]又提出了 KinD++网络。该网络将原空间解耦

为 2个更小的空间，使用多尺度光照注意模块减少了

视觉伪影，同时可以根据不同的需求调整亮度。为了

学习输入图像到光照的映射，WANG等[17]提出了一

个欠曝光图像增强网络 DeepUPE，通过约束增强图像

与标签图像的一致性，来间接约束光照估计网络。但

该方法受限于标签图像的亮度和对比度，泛化能力较

差。受深度图像先验知识的启发[18]，ZHAO等[19]提出

的 RetinexDIP将高斯噪声图像作为输入，分别生成反

射分量和照度分量，将 Retinex的解耦问题转化为了

图像生成问题。但该方法进行低光照图像增强时需

对每个输入图像进行一定次数的迭代，消耗大量的计

算时间，网络的实时性较差。LI等[20]提出了一种不依

赖于配对或非配对训练数据集的无参考图像增强算

法，称为 Zero-DEC，该方法通过为给定的低光图像学

习特定的高阶曲线，来实现低光图像增强。尽管通过

卷积网络学习高阶曲线的参数是一种巧妙的自监督

学习方法，但设计的高阶曲线还需要进一步优化以解

决面对较暗的井下低光照图像时亮度提升不足的问

题。为提高高阶曲线参数估计的准确性，ZHANG等[21]

提出了一种轻量级变压器来提高特征提取能力，并预

测 Zero-DEC的高阶曲线。MA等[22]提出了一种自校

准学习框架 SCI，该方法是通过构建自校准模块实现

级联照明的学习过程，并通过权重共享来处理这项任

务，确保了增强图像保持良好的平滑特性，同时抑制

了过度曝光。

尽管很多先进的研究方法不断涌现，但井下缺乏

自然光且人造光源不均匀，使得基于非学习的方法需

要频繁调整参数以适应不同场景需求。此外，尽管有

监督学习可以根据正常光照数据反馈模型性能并进

行优化，但井下正常光照图像的获取以及与低光照图

像的对齐处理难度大，难以产生大规模高质量的配对

数据以满足有监督学习的训练，导致基于监督学习的

方法存在泛化性差的问题。现有的基于自监督学习

的低光照图像增强方法产生的增强效果仍需进一步

提升，以满足实际井下应用的需求。由于井下复杂的

空间环境以及人造光源无法产生均匀的光照，低光照

图像中纹理细节和边缘结构特征不够明显，此处的边

缘结构主要指受井下人造光源的影响，在图像中反映

为场景中明暗交界的边缘；而细节纹理主要指在场景

中，受光源影响时物体表面存在的粗糙纹理特性。因

此，进行 Retinex分解时产生理想的具有分段平滑的

光照图是一个挑战。

针对以上存在的问题，提出一种基于结构和纹理

感知的井下低光照自监督图像增强方法。该方法首

先设计了一种光照估计网络，利用自监督训练损失保

留场景的边缘结构并平滑纹理细节，以产生分段平滑

的光照图。受井下复杂光照环境的影响，统一的特征

提取方法对结构和纹理感知不够显著。为了深入挖

掘低光照图像中的局部纹理特征和全局结构特征以

提高光照估计网络的性能，在光照估计网络中引入了

局部−全局感知模块，简称为“LA-GA”模块，其中 LA
分支表示局部特征提取分支，GA分支表示全局特征

提取分支。为了实现自监督学习的训练方式，摆脱模

型训练对标签图像的依赖，针对光照分段光滑的特性，

采用了一种结构感知的平滑损失对模型进行训练。

为了进一步细化光照估计网络产生的光照图，使其具

有合理的亮度和对比度，引入了伪标签图像生成器来

合成具有良好对比度和亮度的伪标签图像。通过重

建损失约束增强图像与伪标签图像之间亮度和对比

度间的一致性，从而间接约束光照图。 

1　井下低光照自监督图像增强网络

为摆脱模型训练对配对的低光照/正常光照图像

的依赖，提出一种井下低光照自监督图像增强网络，

从而实现复杂矿井场景下的低光照图像增强。图 1
为网络整体结构图，其中具有可训练参数的为结构和

纹理感知的光照估计网络，黑色箭头和红色箭头表示

训练过程中数据的流向，虚线箭头表示损失函数约束

下的梯度传播方向。结构和纹理感知的光照估计网

络模型训练好以后，仅保留红色箭头部分，即可获得

井下低光照图像增强结果。

在模型训练过程中，对于给定的井下低光照图像

S，一方面在结构感知的平滑损失约束下，结构和纹理

感知的光照估计网络生成具有分段平滑的光照图 Ln，

并基于 Retinex模型计算得到增强图像 Yn。另一方面，

通过随机生成一组 Gamma值，对给定的井下低光照

图像 S 进行 Gamma变换，以生成具有不同对比度和

亮度的参考图像，其中包括 N 张比输入图像对比度和

亮度高的参考图像和 N 张比输入图像对比度和亮度

低的参考图像。此外，为了更好地计算参考序列中不

同区域的对比度和亮度，将给定的井下低光照图像 S
和上一次迭代取得的增强图像 Yn-1 加入参考图像序

列。将包含 (2N+2)张图像的参考图像序列作为伪标
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签生成器的输入，经过计算获得当前迭代训练的伪标

签图像 Tn。利用重建损失约束伪标签图像 Tn 与增强

图像 Yn 在亮度和对比度上的一致性，从而间接约束结

构和纹理感知的光照估计网络，产生具有良好亮度和

对比度的光照图。在模型测试和推理阶段，仅保留红

色箭头部分，则结构和纹理感知的光照估计网络可以

根据给定的输入生成具有分段平滑以及良好亮度和

对比度的光照图。 

1.1　伪标签图像

受图像融合算法[23]启发，不同曝光程度的图像可

以按照每像素亮度、局部对比度和每像素的色彩饱和

度计算图像融合权重，根据融合权重选择参考图像序

列中的像素，从而得到具有良好亮度、对比度和饱和

度的图像。为此，采用非线性的 Gamma变换来改变

低光照图像的亮度和对比度。

G = Iγ (1)

G

γ γ < 1

γ > 1

式中： 为 Gamma变换后的图像；I 为输入的低光照

图像； 为调整参数。当 时，拉伸低光照图像中灰

度级较低的像素，使图像整体亮度提升，对比度降低。

当 时，拉伸低光照图像中灰度级较高的像素，使

图像整体亮度降低，对比度提升。

Gamma变换是对每个像素应用非线性变换，提升

全局亮度，在一定程度上扩大低光照图像的亮度范围，

但忽略了像素之间的关系，且参数设置不当，容易造

成局部区域的过曝光 ，需要根据具体情况调整

Gamma值。当 Gamma取值在 (0，1)时，增强输入图

像中曝光不足区域亮度，提升暗部细节；当 Gamma取

值在[1，25)时，降低输入图像中过曝光区域亮度，提高

过曝光区域的可视性。此外，在选择区间时参考了文

献[24]。因此，分别在 (0，1)和区间[1,25)内随机生成

N 个 Gamma值 ，对输入的低光照图像进行 N 次

Gamma变换，再将生成的 2N 张 Gamma变换的图像

进行图像融合，以生成伪标签图像。此外，将未经变

换的低光照图像和训练过程中产生的增强图像添加

至用于进行图像融合的参考图像序列，将参考图像序

列表示为[G0，…，GN-1，S，Yn-1]，其中，(n-1)表示模型训

练中前一次产生的增强图像。由于 n=0次训练过程

中未产生增强图像，因此 n=0次训练中用于计算伪标

签的参考图像序列长度为 2N+1，其他训练过程中的

参考图像序列长度均为 2N+2。
采用图像融合策略生成伪标签时，用于计算融合

权重的指标包含每像素亮度度量 E、局部对比度度量

C 和每像素色彩饱和度度量 S。每像素的亮度度量定

义为

E (i) =
∣∣∣μh×h−0.5

∣∣∣ (2)

i μh×h h×h

h×h

式中： 为图像中的独立像素，px； 为图像中 区

域内的所有像素的平均强度；参数 0.5表示较好的亮

度级别。局部对比度用图像中 区域内所有像素

的局部方差表示，计算公式如下：

C (i) =
1

h×h

∑
p

[
I (p)−μh×h

]2 (3)

h×h式中：I(p)为图像中 区域内的所有像素。每像素

色彩饱和度用 HSV颜色空间中的饱和通道来度量图

像的色彩饱和度，使用 RGB颜色空间定义饱和度，表

示为

S (i) =
max (R,G,B)−min (R,G,B)

max (R,G,B)
, (4)

式中：S(i)为 HSV颜色空间中的色彩饱和度；R、G 和

B 为像素 i 在 RGB颜色空间上 3个颜色通道的像

素值。

k

通过计算参考图像序列[G0，…，GN-1，S，Yn-1]中每

张图像 的像素亮度、局部对比度和像素饱和度，按照

式 (5)生成伪标签图像：

 

结构和纹理感
知的光照估计

网络

2N次
Gamma变换

伪标签图像
生成器

前一个epoch的
增强图像Y

n-1

亮生成 暗生成 伪标签图像T
n

参考图像序列

Y
n
=I/L

n

输入I 增强图像Y
n

光照图L
n

I

recsmooth

图 1    井下低光照自监督图像增强网络结构

Fig.1    Underground low-light self-supervised image enhancement network structure
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Tn (i) = argmax
k=1,2,··· ,2N+2

Ck (i)−S k (i)
Ek (i)

(5)
 

1.2　自监督训练损失

采用结构感知的平滑损失约束光照估计网络产

生分段平滑的光照图。此外，采用重建损失约束增强

图像与伪标签图像的一致性，从而间接约束光照图估

计网络以产生具有合理对比度和亮度的光照图。结

构感知的平滑损失表示为

Lsmooth =
∥∥∥Linit

n −Ln

∥∥∥
2
+

N∑
i=1

∑
j∈Ωh(i)

wi, j

∥∥∥Li
n−L j

n

∥∥∥
2

(6)

Linit
n

Ωh(i) h×h

wi, j wi, j

式中： 为构建的初始光照，即选择低光照图像 S 的

YCbCr颜色空间中 Y 通道作为初始光照；Ln 为估计的

光照图； 为以像素 i 为中心， 区域内不包含像

素 i 的所有像素； 为结构引导权重。 的计算公

式如下：

wi, j = exp
−

∥∥∥Li
n−L j

n

∥∥∥
2

2σ2

 (7)

σ式中： 为标准差，试验中设置为 1。重建损失使用 L1

范数计算增强图像与伪标签图像之间的距离，使增强

图像与伪标签图像的像素值之间的绝对差值最小化，

可以有效保留图像细节。此外，使用 SSIM损失函数

衡量亮度和对比度方面的一致性，使增强图像与伪标

签图像的结构相似性最大化，可以有效保留图像的亮

度和对比度。重建损失表示为

Lrec = (1−α)∥Yn−Tn∥+αLSSIM(Yn,Tn) (8)

α

α
Lrec LSSIM

式中： 为平衡参数，用于控制平滑损失和原始损失之

间的权重，通常为一个[0，1]的正数。依据文献[25]提
供的较为详细的试验数据且参考了大部分关于图像

增强的文献中关于平衡参数的设置，将平衡参数 设

置为 0.84。 为重建损失， 为 SSIM损失，表示为

LSSIM =

(
2μxμy+ c1

) (
2σxy+ c2

)(
μ2

x +μ2
y + c1

) (
σ2

x +σ2
y + c2

) (9)

μx μy σ2
x σ2

y

σxy c1 c2

式中：x 和 y 分别为增强图像 Yn 与伪标签图像 Tn 的窗

口数据， 和 分别为 x 和 y 的均值； 和 分别为 x
和 y 的方差； 为 x 和 y 的协方差； 和 为常数。

最终，用于模型训练的总损失可以表示为

L =Lsmooth+Lrec (10)
 

1.3　结构和纹理感知的光照估计网络

Retinex理论指出，给定一张输入图像 S，可以分

解为反射率 R 和照度 L。反射率 R 描述了场景物体

的内在颜色属性；照度 L 描述了场景照明的光强属性，

决定了图像的对比度和亮度。该分解过程表示为

S = R⊙L (11)

⊙式中： 表示逐元素相乘。Retinex的解耦具有非适定

性，为了缩小解空间，可以将式 (1)变换为 R=S/L。此

时仅需要构建光照估计网络以产生合理的光照图 Ln，

将 R 作为最终的增强图像。

在理想情况下，照度分量是连续且光滑的，即在

图像的每个像素处，照度值都应与相邻像素的照度值

相近。然而，在实际情况中，受人造光源以及物体表

面的边缘和纹理影响，低光照图像会形成明显的阴影

和高光区域以及出现细小的亮度变化。这些变化使

得照度分量在局部范围出现不连续现象，因此照度分

量在实际中表现为分段光滑的特性。

为了从大规模低光照图像中学习鲁棒的内在特

征规律，并为给定的低光照图像匹配合理的光照图，

构建了一个结构和纹理感知的光照估计网络，其结构

如图 2所示。该网络基于编码器−解码器结构进行设

计。在编码器部分采用了 4层卷积结构，其中 2层为

步长为 2的 3×3卷积，主要对特征图进行采样，缩小

特征图的空间分辨率。在解码器部分采用了 2个反

卷积层来提高特征图的空间分辨率，以恢复至与输入

图像相同的分辨率。为了深入挖掘低光照图像中的

局部纹理特征和全局结构特征，在编码器和解码器中

间，引入了局部−全局感知模块。 

1.4　局部−全局感知模块

边缘结构主要指受井下矿灯等不均匀的人造光

源影响在图像中反映为场景中明暗交界的边缘。纹

理细节主要指场景中物体表面存在的粗糙特性，受光

源影响时产生的粗糙纹理。受井下复杂光照环境影

响，统一的特征提取方法对结构和纹理感知不明显，

为了深入挖掘低光照图像中的局部纹理特征和全局

结构特征以提高光照估计网络的性能，在光照估计网

络中引入了局部−全局感知模块。

局部−全局感知模块结构如图 2所示。该模块首

先通过 Split操作将输入特征按通道维度平均划分为

2部分：一部分利用局部特征提取分支感知场景中的

纹理细节特征，另一部分利用全局特征提取分支感知

边缘结构特征。将 2部分特征通过 Concat操作进行

特征拼接，并采用 Fusion模块中的通道注意力机制[26]

控制特征图之间的通道注意力权重，以融合局部特征

和全局特征。 

1.4.1　局部特征提取分支

传统卷积中卷积核的权重是固定的，通常需要多

层卷积的堆叠才能很好地适应图像内容。为了充分
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挖掘低光照图像中的局部纹理特征，在局部−全局感

知模块中引入了局部特征提取分支。如图 3a所示为

局部特征提取分支的结构示意图，在设计局部特征提

取分支时，参考自注意力机制范式，通过线性变换和

深度可分离卷积得到 Q、K 和 V，其中 Q 和 K 用于产

生上下文感知权重。具体表示为：

W = Tanh
(

FC (Swish(FC (Q⊙K)))
√

d

)
(12)

FC(·) ⊙式中： 为线性变换层；d 为特征的通道维度；

为逐元素相乘的 Hadamard积；Swish和 Tanh为激活

函数，Tanh主要将生成的上下文感知权重的值域映射

至[0，1]。
 
 

FC

DWConv DWConv

FC

Swish

FC

Tanh

DWConv

LN

V

K

LN

LN

FFN

FC FC FC

QKV
Q

(a) 局部特征提取分支 (b) 全局特征提取分支

图 3    局部−全局感知模块结构

Fig.3    Local-Global aware block structure
 

不同于自注意力机制中的矩阵乘法，局部特征提

取分支通过具有非线性能力的门控机制生成上下文

感知权重，以空间变化的方式关注并提取 V 中重要的

局部特征信息。该过程可以表示为

Xlocal =W ⊙V (13)
 

1.4.2　全局特征提取分支

视觉 Transformer的自注意力机制具有较强的全

局信息交互能力，使得其全局特征提取能力远高于其

他现有方法。然而，光照估计任务需要处理高分辨

率图像，视觉 Transformer的自注意力机制的计算复

杂度与输入图像的分辨率呈二次方增长，易导致显存

资源的严重消耗。为此，采用一种线性注意力机制来

提取全局特征，以降低计算复杂度，其结构如图 3b
所示。

相比于视觉 Transformer的自注意力机制，该模

块改变了 Q、K 和 V 进行自注意力计算时矩阵乘法的

顺序，如下表示：

Fo = F +V·Softmax
(

KT·Q
√

d

)
(14)

Xgloable = Fo+FFN(Fo) (15)

F ∈ R[HW,C] FFN(·)式中： 为给定的输入特征； 为全连

接层；d 为特征的通道维度；Q、K 和 V 的形状为[HW，

C]，Softmax得到注意力权重的形状为[C，C]，该线性

注意力的计算复杂度与通道维度相关。特征图的通

道维度远小于特征图分辨率的二次方，因此该模块的

计算复杂度远低于原始视觉 Transformer的计算复

杂度。 

2　试验结果与分析
 

2.1　试验配置 

2.1.1　试验参数设置

在 NVIDIA  3 090  GPU和 Intel  Core  i9-10900K
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图 2    结构和纹理感知的光照估计网络结构

Fig.2    Structure and texture-aware illumination estimation network architecture
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β1 = 0.9 β2 =

0.999 ε = 10−8

CPU上使用 PyTorch 1.8.2深度学习框架实现结构和

纹理感知的光照估计网络搭建。在训练过程中，使用

Adam优化器对模型进行优化 ，参数 ，

， ，学习率初始化设置为 5e−4，批量大小

设置为 8，训练次数为 80，将输入图像大小调整为

512×512。 

2.1.2　数据集

为探索该方法对井下低光照图像的适用性和优

势，视频数据取自安徽省淮南市谢桥矿煤矿数据中心，

主要是使用本安型摄像机进行录制。按照间隔 23帧

的方式对视频进行等间隔采样，得到了 997张大小为

1 920×1 280的低光照图像，制作了井下真实场景的低

光照图像数据集 CUMTB-IE，部分样本图像如图 4所

示。此外，为验证方法的普适性，在公开数据集

LOL[13]和 4个非参考数据集 LIME、NPE[27]、MEF[28]、
和 DICM[29]上分别进行了性能评估。LOL数据集是

一个常用的低光照图像数据集，包含 500对多种场景

中不同低光条件下的真实图像，分辨率为 400×600，由
于该方法为自监督学习，不受配对和非配对数据集约

束，因此，随机选取 485张低光照图像作为训练集。
 
 

图 4    CUMTB-IE数据集中部分样本

Fig.4    Partial sample plot in CUMTB-IE dataset
 
 

2.1.3　评估指标

对带有标签的 LOL基准数据集，采用峰值信噪

比 PSNR和结构相似性 SSIM这 2个指标进行客观评

价。其中，PSNR和 SSIM值越高，表示图像的质量越

好。对其他 4个不具有标签的非参考基准数据集，采

用自然度评价指标 NIQE和无参考图像空间质量评价

指标 BRISQUE来进行客观评价。其中 ，NIQE和

BRISQUE的值越低，表示图像的质量越好。 

2.2　试验结果与分析

与其他 6种低光照图像增强方法进行了比较，分

别包括基于监督学习的低光照图像增强方法 Ret-
inexNet、KinD和 DeepUPE以及基于自监督学习的低

光照图像增强方法 Zero-DCE、RetinexDIP和 SCI。
不同方法的定量评估结果见表 1。由于一些方法提供

的官方代码使用的 CUDA版本太旧，无法在 NVIDIA
3 090上运行，因此，将在 NVIDIA V100上运行这些

 

表 1    不同数据集上的低光照图像增强方法的定量比较

Table 1    Quantitative comparison of low-light image enhancement methods on different datasets

方法
LOL LIME NPE MEF DICM

PSNR↑ SSIM↑ NIQE↓ BRI↓ NIQE↓ BRI↓ NIQE↓ BRI↓ NIQE↓ BRI↓

RetinexNet[13] 16.770 0.461 4.597 25.57 4.567 24.81 4.389 23.74 4.500 30.82

KinD[15] 17.640 0.778 4.763 26.77 3.529 24.25 3.846 30.43 3.565 30.49

DeepUPE[17] 11.680 0.502 3.959 23.43 3.994 28.25 3.527 22.55 3.884 26.31

Zero-DCE[20] 14.830 0.531 3.789 23.33 3.590 29.59 3.308 25.48 3.624 28.11

RetinexDIP[19] 9.442 0.322 3.815 21.28 3.604 25.06 3.657 22.35 3.424 25.32

SCI[22] 14.780 0.525 4.138 22.83 4.162 34.89 3.433 26.48 3.609 31.87

提出方法 18.310 0.598 4.055 22.44 3.468 23.37 3.398 21.56 3.401 25.19

　　注：↑表示数值越大越好；↓表示数值越小越好；最优的结果进行了加粗表示。
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代码并产生结果。

分析表 1中的数据可知，基于监督学习的低光照

图像增强方法受数据集差距的影响，在不同数据集上

显示出较大的性能差异，表明基于监督学习的低光照

图像增强方法严重依赖配对的低光照/正常光照图像

数据集，在真实场景中进行低光照图像增强的泛化能

力较差。例如，KinD方法在 LOL数据集上进行训练，

因此在 LOL数据集上取得了较好的 PSNR和 SSIM，

但在面对其他 4个真实场景的图像时，则表现出一般

的低光照图像增强性能。提出的方法在 5个基准数

据集上表现出较为均衡的低光照图像增强性能，表明

该方法在不依赖标签图像监督的情况下，产生了较强

的泛化性能。这对于解决井下难以制作配对的低光

照/正常光照数据集来说是非常重要的。

为验证所提方法面对井下低光照图像的有效性

和适用性，在井下真实场景的低光照图像数据集

CUMTB-IE上进行了泛化性试验，低光照图像增强效

果对比如图 5所示。
 
 

RetinexNetInput KinD DeepUPE

本文方法SCIRetinexDIP

(a) D1 人造光源产生不均匀光照环境

(b) D2 凹凸不平的断面环境

(c) D3 部分区域遮挡环境

ZeroDCE

RetinexNetInput KinD DeepUPE

本文方法SCIRetinexDIPZeroDCE

RetinexNetInput KinD DeepUPE

本文方法SCIRetinexDIPZeroDCE

图 5    数据集 CUMTB-IE上测试图像增强结果对比

Fig.5    Comparison of test image enhancement results on the CUMTB-IE dataset
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通过视觉分析图 5内 3个不同矿井场景下的低

光图像增强效果可以看出，由于光照平滑度约束的限

制，RetinexNet方法在高对比度和局部边缘处产生了

过冲伪影，增强结果与原图风格不符，光照不够真实。

KinD、ZeroDCE和 SCI方法的增强结果改变了原有

图像的色彩饱和度。虽然图像的整体亮度和对比度

得到提升，但面对局部暗区时显示出亮度和对比度提

升不足的现象。DeepUPE方法的增强结果对比度较

高，色彩饱和度较高，但局部区域的亮度提升不足。

RetinexDIP方法面对不同矿井场景的图像时产生了

较好的增强效果，但在试验过程中，需要对给定的输

入图像进行一定次数的迭代，无法应用于实时性的低

光照图像增强，限制了其应用范围。得益于伪标签的

生成方式以及光照估计网络生成分段光滑的光照图

的能力，所提方法面对图 5内等 3个不同矿井场景的

低光照图像，在整体亮度和局部亮度以及对比度和色

彩饱和度方面均产生了相对较好的增强效果，图像内

容也得到了有效恢复，没有产生较为明显的伪影以及

色彩失真的问题。

表 2给出不同方法在数据集 CUMTB-IE上的定

量评估结果。由于该数据集没有配对的标签图像，无

法实现 PSNR和 SSIM指标的计算，因此只进行了无

参 考 评 价 指 标 NIQE和 BRISQUE的 计 算 。 在

CUMTB-IE矿井场景低光图像数据集上，相比于其他

几种方法，所提方法取得了相对较好的 NIQE和

BRISQUE。
 
 

表 2    CUMTB-IE 数据集上增强方法的定量比较

Table 2    Quantitative comparison of augmentation methods on CUMTB-IE dataset

方法 RetinexNet KinD DeepUPE ZeroDCE RetinexDIP SCI 所提方法

NIQE↓ 4.742 3.811 4.546 3.928 4.155 4.338 3.752

BRISQUE↓ 24.854 24.232 26.479 27.583 23.548 25.378 22.886
 

由表 2数据可知，所提方法在 NIQE和 BRISQUE
指标上均达到了最好。该方法的 NIQE指标比 Ret-
inexNet、 KinD、 DeepUPE、 ZeroDCE、 RetinexDIP和

SCI分别降低了 20.88%、1.55%、17.47%、4.48%、9.70%
和 13.51%。 BRISQUE指 标 比 RetinexNet、 KinD、

DeepUPE、ZeroDCE、RetinexDIP和 SCI分别降低了

7.91%、5.55%、13.57%、17.03%、2.81% 和 9.82%。综

合分析，所提方法在视觉效果和评价指标分析上均有

显著的优势，因此，更适用于井下低光照场景的图像

增强。 

2.3　消融试验

为验证所提模块对最终生成的增强图像的有效

性，通过控制模块变量的方式进行了相关的消融试验。

所选测试图像取自数据集 CUMTB-IE，比较了局部特

征提取分支、全局特征提取分支以及局部−全局感知

模块 3种情况下的参数量、NIQE和 BRISQUE指标。

基线模型表示未引入局部−全局感知模块的光照估计

网络，试验中仅改变了深层特征提取结构，其他结构

保持不变，消融试验结果见表 3。
从表 3的消融试验结果可以看出，在基线模型上，

通过使用局部特征提取分支 ，NIQE指标降低了

38.12%，BRISQUE指标降低了 6.93%，表明局部特征

提取分支能够感知场景中的纹理细节特征。通过使

用全局特征提取分支，NIQE指标降低了 41.79%，

BRISQUE指标降低了 13.23%，表明全局特征提取分

支能够感知边缘结构特征。使用局部−全局感知模块，

通过具有非线性能力的门控机制生成上下文感知权

重，以空间变化的方式关注并提取重要的局部特征信

息，同时采用一种线性注意力机制来提取全局特征，

NIQE指标降低了 45.22%，BRISQUE指标降低了

17.04%，局部−全局感知模块在数据集 CUMTB-IE上

表现出最好的性能。
  

表 3    消融试验结果

Table 3    Results of ablation test

方法 参数量/M NIQE↓ BRISQUE↓

基线 — 6.850 27.586

局部特征提取分支 0.087 4.239 25.675

全局特征提取分支 0.060 3.987 23.937

局部−全局模块 0.076 3.752 22.886
 

Lrec

Lsmooth

Lsmooth

Lrec

Lsmooth

为了验证所使用的重建损失 和结构感知的平

滑损失 在方法上的有效性，通过控制损失函数

变量的方式进行相关的消融试验，所选测试图像取自

数据集 CUMTB-IE。其中仅使用结构感知的平滑损

失 对光照估计网络进行训练，不包含伪标签生

成过程；使用重建损失 和结构感知的平滑损失

的组合对光照估计网络进行训练，包含了伪标

签的生成过程。消融试验增强效果如图 6所示。 
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光照图Input Lsmooth+LrecLsmooth

图 6    消融试验结果

Fig.6    Results of ablation test
 

由图 6的消融试验结果可以看出，只使用结构感

知的平滑损失进行训练产生的增强图像，虽然能够约

束光照估计网络产生分段光滑的光照图，使得暗光区

域可以获得较好的对比度，但亮光区域会产生过曝现

象。重建损失可以约束增强图像与伪标签图像之间

亮度和对比度之间的一致性。重建损失提升了暗光

区域的对比度和亮度，且避免了亮光区域的过曝现象

产生。 

2.4　方法耗时性分析

表 4为提出的方法与其他几种方法在数据集

CUMTB-IE下增强单幅图像所需要的时间比较。
 
 

表 4    方法计算时间比较

Table 4    Method calculation time comparison

模型 计算时间/ms

RetinexNet 183.71

KinD 168.32

DeepUPE 113.36

ZeroDCE 88.31

RetinexDIP —

SCI 76.90

提出方法 94.17
 

通过表 4的试验结果可知，在相同的试验数据集

下，该方法的计算时间是 94.17 ms，与较先进的算法

ZeroDCE和 SCI基本持平。 

3　结　　论

1)设计了一种光照估计网络，通过结构感知的平

滑损失约束光照估计网络，保留了场景的边缘结构并

平滑纹理细节，以产生分段平滑的光照图。引入了伪

标签图像生成器来合成具有良好对比度和亮度的伪

标签图像，并利用重建损失约束增强图像与伪标签图

像之间亮度和对比度之间的一致性，从而间接约束光

照估计网络以产生具有合理对比度和亮度的光照图，

有效改善了井下低光照图像的视觉效果。在井下真

实场景的低光照图像数据集 CUMTB-IE上，NIQE和

BRISQUE指标分别达到了 3.752和 22.886。
2)为深入挖掘低光照图像中的局部纹理特征和

全局结构特征以提高光照估计网络性能，在光照估计

网络中引入局部−全局感知模块。试验表明 NIQE指

标降低了 45.22%，BRISQUE指标降低了 17.04%，有

效保留了场景的边缘结构并平滑纹理细节。
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