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Abstract: Due to the complex spatial environment and uneven artificial lighting underground, images captured by under-
ground visual equipment often suffer from insufficient overall or partial lighting and poor visibility of image content. Ex-

isting image enhancement methods for low-light underground images often result in poor contrast and issues with overex-
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posure and underexposure in certain areas. Within this article, we propose a self-supervised image enhancement method
for low-light underground conditions based on structural and texture perception, aiming to alleviate the dependence on
paired low-light/normal-light images during training. Firstly, to generate smoothly segmented illumination maps, we
design a self-supervised structural and texture-aware illumination estimation network, which preserves scene edge struc-
tures and smooths texture details based on self-supervised training losses. To further exploit local texture features and
global structural features in low-light images to improve the performance of the illumination estimation network, we intro-
duce a local-global perception module into the illumination estimation network. This module leverages the ability of con-
volutional operations with small receptive fields to capture local features and the self-attention mechanism of visual trans-
formers to facilitate global information interaction, thus extracting local and global features from low-light images.
Secondly, to facilitate self-supervised learning, we adopt a structure-aware smoothness loss considering the segmented
smoothness property of illumination maps. Finally, to refine the illumination maps generated by the illumination estima-
tion network for reasonable brightness and contrast, we introduce a pseudo-label image generator to synthesize pseudo-la-
bel images with good contrast and brightness. By constraining the consistency between brightness and contrast of the en-
hanced images and pseudo-label images through reconstruction loss, we indirectly constrain the illumination maps. Experi-
mental results on multiple public benchmark datasets and a dataset of low-light images in real underground scenes demon-
strate the effectiveness of our method in enhancing low-light images, as well as its good generalization performance when

faced with low-light images in underground scenarios.
Key words: low-light images; self-supervision; image enhancement; illumination estimation network; local-global
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Fig.1 Underground low-light self-supervised image enhancement network structure
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Fig.2 Structure and texture-aware illumination estimation network architecture
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Fig.4 Partial sample plot in CUMTB-IE dataset
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Table 1 Quantitative comparison of low-light image enhancement methods on different datasets

i LOL LIME NPE MEF DICM

ik PSNR? SSIM?t NIQE| BRI| NIQE| BRI| NIQE| BRI| NIQE/| BRI|
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P T 18.310 0.598 4.055 22.44 3.468 23.37 3.398 21.56 3.401 25.19
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Fig.5 Comparison of test image enhancement results on the CUMTB-IE dataset
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Table 2 Quantitative comparison of augmentation methods on CUMTB-IE dataset
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Table 3 Results of ablation test
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Table 4 Method calculation time comparison
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