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Abstract: Composite adsorbents were prepared using a combination of modified biochar and MOFs through an in-situ

growth method. The modified biochar was doped with Fe/Cu polymetallic and Cu-BTC, both containing unsaturated met-

al centers and oxygen-containing functional groups. The study focused on identifying the Hg’ removal characteristics, in-

vestigating the coupling and synergistic mechanisms between Cu-BTC and modified biochar, and examining the various

types of active centers present. A molecular structure model of the composite adsorbent was developed based on micro-

scopic properties, and theoretical calculations of the Hg’ adsorption process were conducted using density functional the-
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ory, and fractional-wave state density function to uncover the underlying mechanisms of mercury removal and key actions.
The study revealed that the Cu-BTC material exhibited better mercury removal performance compared to modified
biochar. Furthermore, the mercury removal efficiency of Cu-BTC-based modified biochar samples, resulting from a com-
bination of the two materials, was significantly enhanced. The optimal loading ratio was found to be 50%, leading to a re-
markable mercury removal performance of 239.18 ng/g. The molecular model of the composite adsorbent primarily con-
sisted of aromatic structures, including two pyridinium azobenzenes, one anthracene benzene, and one anthracene benzene.
The synergistic effect of polymetallic clusters, oxygen vacancies, and carbon skeleton facilitated the exposure of active
centers. Moreover, the modified biochar acted as a substrate carrier, providing additional metal centers and carbon skelet-
ons within the crosslinked MOFs structure, thereby enhancing electron acceptor and transfer capacities of the reaction sys-
tem. By improving the electron acceptor capacity and mass transfer ability of the system, the formation of highly dis-
persed metal centers was promoted during heat treatment, preventing self-aggregation of metal oxide particles and syner-

gistically enhancing Hg0 removal.
Key words: Cu-BTC; modified biochar; composites; molecular structure; mercury removal mechanism; density func-

tional
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Table 1 Pore structure parameters of samples
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Table 3 Carbon structure attribution and fitting parameters
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Fig.6 Molecular structure modeling of FeCu-BC samples
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Table 5 Elemental composition and atomic ratios of molecular modeling

o TCRIIT/% JF L
i C H 0 N Fe Cu H/C o/C C/N
FeCu-BC 56.04 2.63 7.66 5.03 13.41 15.21 0.56 0.10 13.00
Cu-BTC/FeCu-BC(50%) 38.11 1.44 18.97 1.78 4.74 35.78 0.45 0.37 3.00
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Table 6 Adsorption parameters of Hg0 on the surface of

composite adsorbent under different adsorption

configurations
DA BB/ - mol™) MR /mm (23
A —408.192 0.265 0.66
B —374.437 0.272 0.59
D —272.429 0.282 0.52
E —402.942 0.259 0.62
F —401.930 0.263 0.61
C —547.007 0.236(0.237) 0.71(0.68)
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Fig.14 Density of fractional wave states before and after adsorption of Hg”
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