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摘　要：图像识别智能放煤是实现智能化综放开采的重要技术之一，其核心在于通过监测煤流含矸

率控制放煤口开闭。而井下低照度环境、煤岩块体的不规则形状及堆积叠压等因素是制约煤流含

矸率预测的主要难题。针对煤流表面含矸率，构建了不同照度条件下的煤岩图像数据库，研究了

照度及煤岩种类对图像分割性能的影响，开发了综放开采“放−运”全过程高仿真实验平台，提出

了基于多照度融合与光流场优化的复杂场景下煤流表面投影面积含矸率高精度识别方法。其次，

探讨了不同投影角度和投影方式对煤岩块体二维形态学特征提取的影响，明确了不同维度形态学

特征之间的量化关系，构建了“尺寸+形状”特征融合的煤岩块体体积预测模型，用于合理预测煤

流表面体积含矸率。最后，结合实验室和现场数据验证了所提方法的有效性。研究表明：随着照

度的增大，2 种煤岩组合形式的识别精度均先增大后稳定，并略有下降。通过合理设置照度 (比如

17 730 lx)，煤+泥岩复杂组合的 mAP@0.5 由 88.7%(3 180 lx) 提升至 92.3%。通过引入多照度融合

和光流场分析，可进一步提升复杂场景下的煤流表面投影面积含矸率识别精度和算法适应性。合

理选择光源波长，可以放大煤岩块体相对漫反射率差异，增加煤岩块体图像特征区分度。合理的

图像投影方式也有利于不规则形状煤岩块体投影面积预测，预测偏差由 60% 降低至 10% 以下。通

过引入形状特征辅助体积预测模型，体积预测精度显著提高，决定系数由仅考虑尺寸特征模型的

0.941 6 提升至 0.969 2。
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Abstract: Image-based intelligent control of longwall top coal caving (LTCC) is a critical technology for achieving intelli-
gent  coal  mining.  Its  core  lies  in  monitoring  the  rock  mixed  ratio  (RMR)  of  coal  flow to  control  the  drawing  opening.
However,  challenges  such as  low illumination  in  underground environments,  the  irregular  shapes  of  coal-rock particles,
and their accumulation and compression significantly hinder the prediction of RMR in coal flow. To address these issues,
this study focuses on the surface RMR of coal flow. A coal-rock image database was constructed under various illumina-
tion  conditions  to  investigate  the  influence  of  illumination  and  coal-rock  types  on  image  segmentation  performance.  A
high-fidelity experimental platform for the “caving-transport” process in LTCC was developed, and a high-precision re-
cognition method for surface projection area-based RMR of coal flow under complex scenarios was proposed, based on
multi-illuminance fusion and optical flow optimization. Furthermore, the impact of different projection angles and meth-
ods on the extraction of two-dimensional morphological features of coal-rock particles was explored, and the quantitative
relationships between morphological features across dimensions were clarified. A “size + shape” feature fusion model was
developed to reasonably predict the surface volume-based RMR of coal flow. Finally, the proposed methods were valid-
ated using both laboratory and field data. The research findings indicate that as illumination increases, the recognition ac-
curacy of the two coal-rock combination forms initially increases, stabilizes, and then slightly decreases. By setting a reas-
onable  illumination  level  (e.g.,  17  730  lx),  the  mAP@0.5  for  the  coal  +  mudstone  combination  improved  from  88.7%
(3 180 lx) to 92.3%. The introduction of multi-illuminance fusion and optical flow analysis further enhanced the recogni-
tion accuracy and adaptability of surface projection area-based RMR under complex scenarios. A reasonable selection of
light source wavelength can amplify the relative diffuse reflectance differences of coal-rock particles, increasing the distin-
guishability of image features. Moreover, appropriate projection methods improve the accuracy of predicting the projec-
tion area of irregularly shaped coal-rock particles, reducing the prediction error from 60% to less than 10%. By incorporat-
ing shape features into the volume prediction model, the prediction accuracy was significantly improved, with the coeffi-
cient of determination increasing from 0.941 6 (size-only model) to 0.969 2.
Key words: longwall  top  coal  caving； intelligent  control  of  drawing  opening； rock  mixed  ratio；coal  flow；coal  and
rock morphology
  

0　引　　言

煤炭是我国的主要能源，稳定的煤炭产量是我国

能源安全兜底保障。我国厚煤层储量和产量占比接

近一半，综合机械化放顶煤开采技术，简称综放开采，

是我国开采厚煤层的主要技术之一。经过 40多年的

发展，我国综放开采技术已经达到世界领先水平[1]。

综放开采的煤层厚度可达 20 m、煤层倾角可达 60°，
工作面年产量可达 1 500万 t。对于煤层厚度大于

20 m的急倾斜厚煤层，开发了水平分段综放开采技术，

工作面年产量可达 400万 t。绿色智能、安全高效综

放开采对于保障能源供给具有重要意义[2-3]。

目前，综放开采普遍采用人工放煤方式，劳动强

度大、生产效率低，长时间的作业产生疲劳，可能会引

起误识别、误操作。在 20世纪九十年代，放顶煤技术

在我国展现出了高产高效技术优势之后，人们就开始

思考和探索自动化放煤技术，比如声波、振动、自然射

线、图像、红外光谱等煤岩识别技术。

2009年，发明了“煤矸识别与自动化放煤控制系

统”，并于 2011年获得专利授权 (专利号：ZL2009-
10152006.X)[4]，利用图像传感器和声纹传感器，模拟

人工放煤识别过程进行煤岩识别与含矸率识别。近

几年，结合顶煤运移跟踪仪 (专利号：ZL20091008-
0005.9)[5]，开展了自动化放煤技术的尝试，构建了基于

该技术的自动化放煤控制系统[6]。

由于放煤环境的复杂性以及识别需求的特殊性，

图像识别智能放煤技术在开发与迭代中遇到了一些

技术难题，比如对放顶煤工作面后部刮板输送机上煤

流表面投影面积含矸率的精准识别以及对煤流内部

体积含矸率的准确预测。针对前者，目前学者们在煤

岩图像识别领域开展了相关研究工作，可以适应很多

场景的不同使用需求，比如分选环节的煤岩识别[7]、

综采工作面的煤岩界面识别[8]、掘进工作面的煤岩界

面识别[9]以及一些特殊环境下的煤岩识别，比如粉尘

环境下的煤岩识别[10]、低照度或不均匀光照环境下的

煤岩识别[11]、潮湿环境下的煤岩识别[7]、煤流表面照

度监测[12]、煤岩图像增强与数据库扩增[13]。而后者的

难点在于煤流中煤岩块体不仅形状不规则，而且相互

堆积叠压，在精准识别煤流投影面积含矸率的基础上

准确预测煤流内部体积含矸率难度较大，目前相关研

究较少。

针对图像识别智能放煤煤流表面投影面积含矸
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率的精准识别以及对煤流内部体积含矸率的准确预

测这 2个技术难题，开展了“由表及里”(Surface to In-
side, S2I)含矸率高精度预测研究工作[14]。首先，以煤

岩图像实例分割为基础，实现煤流表面投影面积含矸

率精准识别。其次，以煤岩块体形态学研究为基础，

利用投影面积含矸率预测煤流表面体积含矸率。最

后，通过煤流煤岩块体堆积特征以及煤流内外含矸率

的映射关系，实现煤流内部体积含矸率的高精度预测。

笔者重点介绍煤流表面投影面积含矸率识别与煤流

表面体积含矸率预测，关于煤流内部含矸率预测将另

文介绍。 

1　材料与方法

本研究针对综放开采后部刮板输送机上煤流含

矸率预测问题 (图 1)，开展了 2类图像采集工作，分别

是散体堆积煤岩图像采集与煤流图像采集，其中散体

堆积煤岩图像在实验室环境下采集，煤流图像在实验

室和现场环境下采集，
  

底板

煤层
松散顶煤

采空区

液压支架

后部刮板
输送机

煤流

顶板

图 1    综放开采放煤示意

Fig.1    Schematic diagram of longwall top coal caving mining
  

1.1　散体堆积煤岩图像采集与数据库构建 

1.1.1　煤岩样本

煤岩样本采集自晋能控股煤业集团有限公司北

辛窑矿 8103工作面与山西潞安环保能源开发股份有

限公司王庄煤矿 91208工作面，块度为 5～20 cm，在

清洗后放置在阴凉处风干备用。 

1.1.2　图像采集装置

利用照度可控图像采集系统[15]，采集散体堆叠煤

岩图像。该系统主要包括 CMOS相机，ED-200型

LED补光灯，红外遥控器和 VC1010D型照度计等。

其中，相机光圈值为 7.1，快门速度为 1/250 s，感光度

为 400。 

1.1.3　散体堆积煤岩图像数据库构建

构建了煤岩图像数据库用于含矸率识别，包括图

像采集、标注和增强等步骤。

1)图像采集。图像采集考虑了 6种不同照度条

件 (3 180、10 780、17 730、24 200、30 700和 35 600 lx)、
2种煤岩组合形式 (“煤+砂岩”组合和“煤+泥岩”组

合)以及 9种不同的含矸率分组 (10%，20%，…，90%)，
如图 2、图 3所示。其中，含矸率是根据密度，利用质

量换算成体积得到的体积含矸率。按照 7:2:1划分训

练集、验证集和测试集。
  

(a) 3 180 lx (b) 10 780 lx (c) 17 730 lx

(d) 24 200 lx (e) 30 700 lx (f) 35 600 lx

图 2    煤与砂岩混合图像

Fig.2    Coal and sandstone images
 

  

(a) 3 180 lx (b) 10 780 lx (c) 17 730 lx

(d) 24 200 lx (e) 30 700 lx (f) 35 600 lx

图 3    煤与泥岩图像

Fig.3    Coal and mudstone images
 

2)图像标注。对煤岩图像进行标注，标注工作由

6名经过培训的、有经验的科研人员完成，采用多边

形对图像中煤岩块体轮廓进行了精确圈定。

3)图像增强。对煤岩图像进行图像增强，如图 4
所示，包括水平翻转、垂直翻转、旋转，剪裁、水平错

切、垂直错切、椒盐噪声以及遮挡等。在进行增强前，

先将图像的尺寸调整为 1 280 px×1 280 px。另外，在

图像增强环节，不对图像的亮度进行调整。

4)数据库构建。将处理后的训练集、验证集和测
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试集存储在数据库中，构建煤岩图像数据库，数据库

基本信息见表 1。数据库中包含 2种煤岩组合形式，

在 6种不同照度采集的图像，共计 5.4 万余幅。
  

表 1    图像数据库基本信息

Table 1    Basic information of database of images

组别 煤岩组合形式 照度/ lx 训练集/幅 验证集/幅 测试集/幅 合计/幅

1

煤+砂岩

3 180 3 520 1 000 480 5 000

2 10 780 3 520 1 000 480 5 000

3 17 730 3 520 1 000 48 5 000

4 24 200 3 520 1 000 480 5 000

5 30 700 3 520 1 000 480 5 000

6 35 600 3 520 1 000 480 5 000

7

煤+泥岩

3 180 2 840 800 400 4 040

8 10 780 2 840 800 400 4 040

9 17 730 2 840 800 400 4 040

10 24 200 2 840 800 400 4 040

11 30 700 2 840 800 400 4 040

12 35 600 2 840 800 400 4 040
  

1.2　煤流图像采集与数据库构建 

1.2.1　综放开采“放−运”全过程高仿真试验平台开发

开发了综放开采“放−运”全过程高仿真试验平台，

试验平台主要由支架、后部刮板输送机、框体等部分

组成，如图 5所示。支架放煤口的打开与关闭由铰链

控制，后部刮板输送机由无极电机控制链速，试验框

体由高性能亚克力组成，采用青色与白色巴厘石作为

煤和岩石的模拟材料[16]，利用 GOPRO和 CMOS相机

作为图像采集装置对放煤过程进行全程记录。 

1.2.2　煤流图像数据库构建

开展了综放开采“放−运”全过程高仿真实验，对

煤流图像进行实时采集，图像采集帧率为 60 fps，裁剪

后如图 6所示，图像尺寸为 855 px×575 px。其中，本

实验考虑了 5种不同刮板链速，根据相似比 (1:30)分
别模拟实际工况下的 0.5、1.0、1.5、2.0、2.25 m/s链速

情况。

此外，在王庄煤矿 91208工作面、曹家滩煤矿

122105工作面安装了智能放煤图像采集系统，包括

 “慧眼 II号”图像采集装置与照度可控补光灯 (图 7a)，
对后部刮板输送机上的煤流图像进行了采集 (图 7b)，

 

(a) 增强结果1 (b) 增强结果2 (c) 增强结果3

图 4    图像增强示意

Fig.4    Image augmentation

 

图像采集装置

后部刮板输送机

支架

框体

后部刮板输送机

图像采集装置

煤层

岩层

放煤口

支架

2
2
 c

m

60 cm

5 cm

8 cm

无极调速电机

(a)

(b) (c)

图 5    综放开采“放−运”全过程高仿真试验平台

Fig.5    High-fidelity experimental platform for the “caving-

transport” process in LTCC
 

图 6    实验室采集煤流图像示意

Fig.6    Coal flow image acquisition in the laboratory

 

慧眼Ⅱ号

补光灯

后部刮板输送机

补光灯后部刮板输送机

支架连杆 插板
尾梁

后部刮板输送机

煤流运动方向

(a) 采集装置

(b) 煤流图像

图 7    现场煤流图像采集

Fig.7    On-site coal flow image acquisition
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图像采集帧率为 25 fps，图像尺寸为 1 920 px×1 080 px。
将实验室和现场采集的煤流图像汇总，构建了煤

流图像数据库。 

1.3　基于光流场优化的煤流图像实例分割 

1.3.1　煤流光流场提取方法

对于综放工作面放煤过程含矸率的计算，通常计

算的是后部刮板输送机上煤流的含矸率，而图像采集

区域通常会大于刮板输送机区域 (图 7b)，造成刮板输

送机两侧堆积的煤岩有时也会被识别并纳入含矸率

计算中。因此，在进行图像分割与含矸率计算前，需要

利用运动目标监测对煤流运动区域进行准确圈定。

常用的运动目标检测方法有帧差法、背景差分法

和光流法等。其中光流法是通过计算当前帧图像中

每个像素点同后一帧图像中同名像素点间的运动矢

量值，将当前帧图像中所有像素点的运动矢量值汇集

成图像的光流矢量场，通过阈值化处理标量化的光流

矢量场实现运动目标的检测。光流法不需要先验知

识，具有精度高，鲁棒性强的特点[17]。

提出了一种基于光流场优化的煤流图像实例分

割方法。首先利用深度学习算法 GMFlow[18]，提取综

放工作面后部刮板输送机煤流的光流场，将光流运动

速度小于阈值的视为静态物体以剔除，精准圈定画面

中煤流运动区域，进一步采用 Yolov7-seg[19]对该区域

进行实例分割，计算煤流含矸率。通过引入光流场，

可以精准圈定煤流区域，降低数据冗余度，提高煤流

含矸率识别精度与效率。 

1.3.2　实验环境

实验所用的操作系统为 Ubuntu 20.04.4，CPU型

号为 Intel(R)  Xeon(R)  Silver4210R  CPU@2.40  GHz，
GPU型号为 Nvidia Geforce RTX 3090，显存 24 G，使

用的深度学习框架为 Pytorch 1.13.1，编程语言为 Py-
thon 3.7.16，GPU加速库为 CUDA 11.6、CUDNN 8.2。 

1.3.3　评价指标

选取精确率 (Precision)、召回率 (Recall)、F1 值

(F1  score)、平均精度均值 (Mean  average  precision，
mAP)作为模型精度的评价指标。选取每秒 10亿次

的 浮 点 运 算 数 (Giga  floating-point  operations  per
second， GFLOPs)、每秒传输帧数 (Frames Per Second，
FPS)作为模型轻量化评价指标。 

1.3.4　模型训练

对表 1图像数据进行训练，迭代次数为 200轮次，

初始学习率为 0.001，学习率动量为 0.9，采用余弦退

火算法调整学习率，批量大小设置为 16。经过 200轮

次迭代，损失函数 Loss降低至 0.029， mAP@0.5达到

94.5%，如图 8所示。
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图 8    损失函数与平均精度均值

Fig.8    Loss and mean average precision
  

1.4　煤岩块体图像序列采集和煤岩块体三角网格模

型计算

煤流中的煤岩块体不仅是三维块体，而且相互叠

压堆积，这与它在图像中以投影形式呈现是有差异的。

为了在二维图像投影面积含矸率的基础上进一步获

得三维煤流中的体积含矸率，利用煤岩块体多视图像

序列采集平台，分别在 20°和 30°俯角条件下，以 10°
旋转间隔，各采集 36张煤岩图像，获得了一个由 72
幅图像组成的煤岩块体多视图像序列，采用投影轮廓

算法计算煤岩块体三角网格模型[20]，平台参数以及三

角网格模型计算流程参见文献[21-22]。 

1.5　煤岩块体一维、二维以及三维形态学特征提取

方法

提取了包括尺寸特征与形状特征在内的煤岩块

体形态学特征，见表 2、表 3[23-24]。
其中，采用图像分析方法计算煤岩块体三角网格

投影图像的二维尺寸特征，包括面积、周长、最大内切

圆半径 rmic 和最小外接圆半径 rmcc，如图 9所示。

基础尺寸参数由 3个长度组成，分别是煤岩块体

最小包围盒 (Minimum Bounding Box， MBB)的最长

边、中间边和最短边的长度，分别用 L、I 和 S 表示。

MBB与煤岩块体的位置关系如图 9c所示。利用基础

参数以及尺寸特征，可以获得块体形状特征，见表 3。
其中，三维 Wadell圆度是采用基于图像处理和形貌分

析的 IPTA算法[22]计算得到。 

1.6　煤岩块体二维投影图像获取方法

图像中的煤岩块体仅是三维煤岩块体在某一角

度下的投影，从不同角度观察会有不同的形状呈现。

因此，在计算煤流表面体积含矸率的时候，需要充分

考虑由于投影角度随机性带来的投影图像差异，进而

引起的煤岩块体二维形态学特征差异。

本研究考虑了包括随机投影、最大面积投影、最

小面积投影以及正交投影等在内的多种投影方式。
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其中，随机投影方式是随机设置投影角度获取的投影

图像，也是较为符合放煤过程中煤岩块体随机放落、

碰撞、翻滚以及堆积实际情况的投影方式。最大、最

小面积投影方式分别是指遍历所有投影角度后，选出

投影面积最大和最小的投影图像。正交投影方式是

将块体投影到 3个相互垂直的平面上，图 10是有一

 

表 2    二维以及三维尺寸特征描述符[23-24]

Table 2    2D and 3D form descriptors for characterizing particles[23-24]

序号 名称 类型 符号 备注

1 面积

二维尺寸特征

AP 投影轮廓的真实面积

2 周长 PP 投影轮廓的真实周长

3 长 d1 其中一边为块体最长尺寸的外接矩形的长边

4 宽 d2 其中一边为块体最长尺寸的外接矩形的短边

5 等效圆直径 Deq 与投影轮廓具有相同面积的圆的直径

6 等效圆周长 Peq 与投影轮廓具有相同面积的圆的周长

7 最大内切圆直径 Dmic 最大内切圆半径rmic = Dmic/2

8 最小外接圆直径 Dmcc 最小外接圆半径rmcc = Dmcc/2；最小外接圆面积Amcc = π(Dmcc/2)
2

9 体积

三维尺寸特征

V 块体的真实体积

10 表面积 As 块体的真实表面积

11 最大内切球直径 Dmis 最大内切球半径rmis = Dmis/2

 

表 3    一维、二维以及三维形状特征描述符[23-24]

Table 3    1D, 2D and 3D shape descriptors for characterizing particles[23-24]

序号 名称 类型 符号 定义

1 Elongation

一维形状特征

e I/ L

2 Flatness f S / I

3 Krumbein intercept sphericity FKr
3
√

IS
/

L2

4 Corey shape factor FCr S
/ √

LI

5 Sneed and Folk maximum projection sphericity FSF
3
√

S 2
/

LI

6 Aschenbrenner working sphericity FAc
12.8 3√ f 2e

1+ (1+ e) f +6
√

1+
(
1+ e2) f 2

7 Wilson and Huang shape factor FWH (I+S )/ 2L

8 Cox circularity

二维形状特征

φCox 4π AP
/

P2
P

9 Riley circularity φRiley
√

Dmic/Dmcc

10 二维Wadell圆度 R2

N2∑
i=1

r2,i

/
N2rmic，r2,i为第i个最大内切圆的半径，N2为最大内切圆总数

11 Area sphericity SA AP/ Amcc

12 Diameter sphericity SD Deq
/

Dmic

13 Circle ratio sphericity SC Dmic/Dmcc

14 Perimeter sphericity SP Peq
/

Pp

15 Width to length ratio spehricity SWL d2/ d1

16 Roughness Rh
Rh =

√√
1
n

n∑
k=1

(
ρk −ρk− m

)
，n为轮廓点总数，ρk和ρk-m为平滑前后表面的

第k个轮廓点高度

17 Sphericity

三维形状特征

ψ
3√

36π V2
/

As

18 三维Wadell圆度 R3

N3∑
j=1

r3, j

/
N3rmis，r3,j为第j个最大内切球的半径，N3为最大内切球总数
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个投影图像为最大面积投影图像的正交投影示意。 

2　煤流表面投影面积含矸率识别
 

2.1　煤岩图像分割的照度适应性分析 

2.1.1　不同照度下的煤岩图像分割精度

对煤+砂岩以及煤+泥岩 2种煤岩组合在 6种不

同照度条件下图像进行了实例分割，图 11为煤+泥岩

图像在 24 200 lx照度条件下的分割结果。

图 12为不同照度环境下煤岩图像实例分割的平

均精度均值 mAP@0.5。可以看出，一方面，对于同一

种煤岩组合形式，不同照度下的 mAP@0.5不同，随着

照度的增大，煤+砂岩和煤+泥岩 2种组合形式的

mAP@0.5都呈现出了先增大后趋于稳定，并伴有轻

微下降的趋势。这说明照度因素对于模型的识别精

度产生了影响，设置合适的照度或者照度区间，可以

有效提升煤岩图像实例分割的精度。

另一方面，对于同一种照度环境，不同煤岩组合

形式的图像分割 mAP@0.5不同。煤+砂岩组合形式

的识别精度在本实验涉及到的 6种照度条件下均大

于煤+泥岩组合形式。这与人眼视觉感受相同，灰白

色的砂岩比深灰−灰黑色的泥岩更容易从煤流中被识

别出来。即便是最困难的煤+泥岩这种复杂组合形式，

通过合理设置照度 (I = 17 730 lx)，可以让 mAP@0.5
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图 9    煤岩块体投影图像二维尺寸特征测量示意

Fig.9    Measurement of two-dimensional form descriptors of the projection of coal and rock
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图 10    煤岩块体正交投影示意

Fig.10    Orthogonal projection of the coal and rock block
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图 11    煤+泥岩图像分割结果

Fig.11    Segmentation result of coal and mudstone
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由 88.7%(3 180 lx)提升至 92.3%。 

2.1.2　不同煤岩种类图像分割精度

模型在不同煤岩种类上的性能表现存在明显差

异，如图 13所示。砂岩的识别性能最佳，平均 F1 值

和 mAP@0.5分别达到 94.5% 和 96.4%，且在不同照

度下表现稳定，说明模型对砂岩的识别具有较高的鲁

棒性。煤的识别性能居中 ，平均 F1 值为 89.1%，

mAP@0.5为 90.7%，但在低照度条件下性能略有下降，

反映出模型在煤的识别上存在一定的误检或漏检问

题。泥岩的识别性能最差 ，平均 F1 值为 88.4%，

mAP@0.5为 90.3%，尤其在低照度条件下性能波动较

大，表现出对照度变化的敏感性，识别难度较大。整

体来看，模型对砂岩的识别效果最好，煤和泥岩次之，

特别是在低照度条件下表现不稳定。

此外，该模型在分割煤岩图像时，在图像分辨率

1 280 px×1 280 px、640 px×640 px的条件下，检测帧

分别为 26.5 fps与 51.5 fps，表现出了较好的识别效率，

满足图像识别智能放煤对于图像分割实时性的要求。 

2.1.3　利用照度提升算法适应性的构想与基本原理

在实验室条件下，可以设置较为固定的照度环境，

而在现场应用时，由于移架拉后溜、放煤量变化、煤流

表面起伏等原因，始终保持煤流表面照度为某一固定

数值并不容易，即便在基于立体视觉的智能放煤照度

精准调控方法下[12]，做到实时监测与调控照度在技术

上是可以实现的，但并不是经济的做法。

通过上述实验发现，照度会影响煤岩识别的精度，

随着照度的增大，识别精度会提高，但是当照度增大

到一定数值后，精度保持相对稳定。因此，设想在现

场应用时，将煤流表面照度稳定在峰值精度附近的某

个照度区间内，而非固定的照度数值，一方面确保了

图像采集工作在相对合适的照度环境下开展，保证图

像识别精度，另一方面，通过适当提高照度监测间隔，

让照度在某一时间段内保持在某个区间范围内，降低

模型对照度环境的严苛要求，减少了煤流照度实时监

测与调控的工作量，提高算法适应性。 

2.2　重组数据库的构建

开展了研究多照度融合下的煤岩图像实例分割

研究，一方面是为了更好适应现场实际使用环境，用

于模拟现场实际应用过程中，在某一照度区间内进行

图像分割，而不是在某一固定照度条件下进行图像分

割的情况，另一方面是探索在考虑融合多种照度后是

否可以提高图像识别精度。

前面研究结果表明，17 730 lx和 24 200 lx是比较

适合本实验煤岩样本图像分割的照度，对 17 730 lx
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图 13    不同煤岩种类的分割精度

Fig.13    Segmentation result of different coal-rock types
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和 24 200 lx条件下的煤岩图像数据库进行融合重组，

按照比例构建一个包含 2种照度的图像数据库，称为

重组图像数据库，见表 4。
 
 

表 4    实验室重组煤图像数据库基本信息

Table 4    Basic information of database of images collected in
the laboratory

煤岩组合形式 组别 照度/lx 选取比例

煤+砂岩

1
17 730 0.25

24 200 0.25

2
17 730 0.50

24 200 0.50

3
17 730 0.75

24 200 0.75

4
17 730 1.00

24 200 1.00

煤+泥岩

5
17 730 0.25

24 200 0.25

6
17 730 0.50

24 200 0.50

7
17 730 0.75

24 200 0.75

8
17 730 1.00

24 200 1.00
  

2.3　多照度融合的实验结果与分析

图 14为多照度融合条件下煤岩图像实例分割的

平均精度均值 mAP@0.5。可以看出，对于同一种煤

岩组合形式，不同重组数据库条件下的 mAP@0.5不

同，随着训练集中图像数量的增多，煤+砂岩和煤+泥
岩 2种组合形式的 mAP@0.5都呈现出了先增大后减

小。这说明在训练参数一定的情况下，不能单纯增大

图像数量来提高模型识别精度。

另外，对于同一种数据库重组形式，不同煤岩组

合形式的 mAP@0.5不同，具体来说，煤+砂岩组合形

式的识别精度在本实验涉及到的 4种数据库重组形

式条件下均大于煤+泥岩组合形式。通过多照度融合，

让煤+砂岩组合形式的 mAP@0.5从 94.7% 提升到了

95.1%，而煤+泥岩复杂组合形式的 mAP@0.5仍然保

持 92.3%。虽然融合多照度没有让煤+泥岩组合形式

的识别精度提升，但是多照度融合提高了模型的适应

性，降低了对现场光照环境的要求，可以实现在一个照

度区间、而不是一个固定照度条件下完成含矸率计算。

综上所述，相比于单照度条件下的煤岩图像实例

分割，合理选取若干合适照度进行融合，不会降低图

像分割精度，而且由于考虑了多种照度，可以让算法

识别某个照度区间、而不是某一个固定照度的煤岩图

像，拓展了图像识别智能放煤技术的适用范围，降低

了对照度因素的严苛要求，有利于图像识别智能放煤

技术的推广与应用。 

2.4　煤流运动区域提取

对放煤过程后部刮板输送机煤流的光流场进行

分析，提取画面中煤流运动区域，并仅对煤流运动区

域进行图像分割，分割结果被用于含矸率计算，如

图 15所示。其中，图 15a为某次放煤作业中不同时

间的 5幅煤流图像，后部刮板输送机在图像画面中部

水平方向布置 (图中蓝色虚线框)，煤流由左向右运动，

刮板输送机旁堆积有煤岩块体 (图中红色虚线框)。
图 15b为煤流的光流场，颜色的种类表示物体运动的

方向，颜色的深浅表示在该方向下的速度大小。可以

看出，画面中部由较为均匀的颜色分布，而画面上部

和下部为白色，说明画面中部存在较为匀速且同向的

运动，而其他区域的物体速度低于阈值或为零，这与

画面中部为煤流的实际情况吻合。另外，在后部刮板

输送机和液压支架中间区域堆积的大块煤岩，在光流

场图中被准确识别出来，实现了其与运动煤流的有效

分离。

将煤流光流场图作为掩膜叠加到原始煤流图上

得到如图 15c所示煤流运动区域图，该图中仅保留了

运动煤流所处区域。图 15d与图 15e分别为对原始

煤流图 (图 15a)、煤流运动区域图 (图 15c)进行图像

分割的结果，可以看出，在原始煤流图的分割结果中，

不仅煤流上运动的煤岩块体被识别，后部刮板输送机

两侧堆积的煤岩也会被识别，而这些堆积的煤岩通常

会被长时间纳入含矸率计算中，严重影响含矸率识别

结果，进而引起智能放煤系统的错误判断。在煤流运

动区域图的识别结果中，由于对煤流运动区域进行了

精准圈定，所以识别结果仅限于后部刮板输送机上运

动的煤流的含矸率，这更符合智能放煤对于含矸率计
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图 14    煤岩图像分割平均精度均值

Fig.14    Mean average precision of coal-rock segmentation
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算的需求，并且由于剔除静止物体冗余信息，也有利

于提高复杂场景下的含矸率识别效率。 

3　煤流表面体积含矸率预测
 

3.1　投影面积与形态学特征分布特征

图像采集角度会影响物体在图像中的表现，即便

是同一个物体，从不同角度拍摄，它在图像中会呈现

出有不同的形状。在综放工作面，放煤过程中煤岩块

体碰撞堆叠，在图像中的呈现具有一定随机性。因此，

煤岩块体投影图像的二维形态学特征是否可以被预

测，或者采用何种图像投影方式可以让二维形态学特

征可以被近似预测，成为能否利用煤岩块体二维投影

图像预测三维块体形状首先要回答的问题。

提取了 6种典型形状的煤岩块体的三角网格模

型在 1 000个随机投影图像的面积 AP 和二维 Wadell
圆度 R2，包括立方体状煤岩块体 (Cubic-like particle，
CP)、棒状煤岩块体 (Rod-like particle，RP)、盘状煤岩

块体 (Disk-like particle，DP)、刀片状煤岩块体 (Blade-
like  particle， BP)、 多 角 状 煤 岩 块 体 (Multangular
particle， MP)和 复 杂 形 状 煤 岩 块 体 (Complicated
particle，CMP)[22]，如图 16所示。

可以看出，6种典型煤岩块体不同投影角度下具

有不同的投影面积 AP。本研究选用的 CP与 MP在不

同维度下尺寸接近，所以表现为 AP 分布较为集中。

而对于 RP、DP以及 BP而言，它们至少在 1个维度

上的尺寸要显著区别于其他维度上的尺寸，另外，由

于 CMP断面的特殊性，导致它们在不同投影角度下

的 AP 差异较大。因此，对于 CP和 MP，通过一次随机

 

(a) 原始煤流 (b) 煤流光流场 (c) 煤流运动区域 (d) 原始煤流分割 (e) 运动区域分割

图 15    基于光流法的煤流运动区域提取结果

Fig.15    Results of coal flow motion region extraction based on the optical flow method
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图 16    典型煤岩块体二维形态学特征分布

Fig.16    Distribution of two-dimensional morphological

descriptors of the coal and rock
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角度投影，图像中的 AP 可以较为准确地反映煤岩块

体的平均水平，而对于 RP、DP、BP和 CMP，则很难

准确地反映煤岩块体的平均水平。在综放工作面，各

种形状的煤岩块体都有可能出现，仅仅依靠通过采集

一张图像获得的 AP 数据不足以用于表征煤岩块体的

平均水平，更不能进一步用于预测三维形态学特征。

与 AP 分布不同的是，CP与 MP在不同投影角度

下 R2 差异性较大，说明即便在不同投影角度下具有

相近的尺寸，但是它们的形状可能会存在较大差异。对

于 RP、DP以及 BP和 CMP，它们的 R2 分布更为离散。

所以一张图像获得的 R2 数据不能用于表征煤岩块体

的平均水平，也同样不能用于预测三维形态学特征。 

3.2　投影方式的确定

x∗2

通过指定投影角度以及增加投影数量，探究何种

投影方式下获得的二维形态学特征更适合用于三维

形态学特征预测。提取了 6种典型形状的煤岩块

体[22]在不同投影数量 Np 下的 AP 和 R2。其中，Np 分

别为 1、2、3、5、10、20、50、100和 1 000。Np = 1表

示最大面积投影，Np = 2表示最大和最小面积投影，

Np = 3表示有一个投影图像为最大面积投影图像的正

交投影，Np > 3表示相应投影数量的随机投影。以

Np = 1 000的随机投影获得的二维形态学特征的平均

值作为煤岩块体的平均水平，计算了二维形态学特征

x2 的偏差 ，如图 17所示。

x∗2 =

Np∑
m=1

x2,m

Npx2
−1 (1)

x2,m x2式中： 为第 m 个投影图像的二维形态学特征值；

为 1 000个随机投影二维形态学特征的算数平均值。

A*
P

A*
P

A*
P

A*
P R*

2

R*
2

可以看出，煤岩块体投影图像的面积偏差 随着

投影数量的增加而减小。对于 Np = 1，即最大面积投

影 ， 为 BP(+64%)、 DP(−58%)、 CMP(+41%)、 RP
(+33%)、CP(+17%)和 MP(+17%)。对于 Np = 2，所有

样本的 均显著降低 ，比如 BP(+6%)、DP(+8%)、
CMP(+3%)、 RP(+3%)、 CP(−4%)和 MP(+0.4%)。 对

于 Np = 3，所有样本的进一步减小，普通降至±10% 以

下，特别是 DP(+0.4%)和 CMP(+0.1%)。随着 Np 的继

续增大， 进一步降低。 也表现出类似的特点，随

着投影数量 Np 的增大， 逐渐降低。

因此，采用一个投影不足以表征煤岩块体的二维

形态学特征的平均水平，但投影数目太多会增加计算

量。综合考虑精度和效率，确定一个投影图像为最大

面积投影图像的正交投影为当前预测体积含矸率的

合理投影方式，可以在较少的投影数量前提下，获得

可以准确表征平均水平的形态学特征指标，进而用于

三维形态学特征预测。 

3.3　投影面积与体积的定量关系分析

图 18为 36个煤岩块体[22]的投影面积 AP 和体积

V 的分布，其中，AP 是在 Np = 3条件下获得的。
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图 18    煤岩块体体积和投影面积

Fig.18    Relationship between the volume of coal and rock and

the area of projection
 

可以看出，投影面积和体积表现出了较好的线性

相关性，决定系数 R2 为 0.941 6。表明在正交投影下

获得的煤岩块体投影面积可以用于预测其体积，且有

较好的预测精度。 
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图 17    不同投影方案下二维形态学特征偏差
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3.4　形状特征对投影面积预测体积的辅助作用

图 19为煤岩块体的一维、二维以及三维形态学

特征。二维形态学特征是在 Np = 1 000投影方式下获

得的平均值，所有煤岩块体的平均值标注在每个箱形

图的下方。

煤岩块体的伸长度 e 和扁平度 f 分布表现出较大

的变异度，其中，e 的变化范围在 0.37～0.95，f 的变化

范围在 0.22～ 0.97，均具有较大的极差。利用由

BLOTT等[25]提出的块体形状分类方案，根据 e 可以

将本研究使用的煤岩块体划分为“非常细长”(very
elongate)至“不细长”(not elongate)组别。根据 f 可以划

分为“非常平整”(very flat)至“不平整”(not flat)组别。
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图 19    煤岩块体一维、二维以及三维形态学特征变异度

Fig.19    Variability of the 1D, 2D and 3D morphological descriptors of coal and rock
 

R2 和 R3 表现出了较小的平均值和较低的极差，

其他形态学特征表现出较大的变异度。说明本研究

涉及的煤岩块体具有丰富的形状，一方面反映了样本

采集的合理性，另一方面也说明了研究煤岩块体形态

学特征的必要性。 

3.5　基于多元回归的体积预测模型优化

考虑到形状特征对尺寸特征可能的影响，进一步

利用多元线性回归方程，提出了以投影面积为主，形

状特征为辅的“尺寸+形状”特征融合煤岩块体体积预

测方法。以二元线性回归为例，有交互项的多元线性

回归的方程形式为

y = β0+β1x1+β2x2+β3x1x2+ ε (2)

式中，y 为因变量；x1 和 x2 为自变量 1和自变量 2；β0
为截距；β1、β2、β3 为回归系数；ε 为残差。

本研究使用的二维尺寸特征是煤岩块体投影图

像的面积，采用的形状特征包括一维和二维形状特征

(表 3)。利用形状特征辅助二维尺寸特征 (即投影图

像面积)进行体积预测的思路，将面积分别与这 16个

形状特征进行交互，通过方差膨胀因子 (VIF)进行多

重共线性评价，依次移除 VIF大于 10的自变量，并将

显著性概率 P 值大于 0.05的自变量移除，在每移除一

个自变量后均进行一次回归分析。对回归方程残差

的方差齐性进行了检验，如图 20所示，预测残差和实

际残差近似为直线，说明残差符合正态或近似正态分

布，满足回归分析条件。

在回归方程残差分析的基础上，建立了该实验样

本下的“尺寸+形状”特征融合的煤岩块体体积预测

模型。

V =1 855 043+ e (155.8AP−3 521 370)+
f (70.92AP−1 973 866) (3)
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图 20    回归方程残差分析

Fig.20    Residual analysis of regression equation
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3.6　体积预测精度

该模型的决定系数 R2 为 0.973 2，比基于尺寸特

征的煤岩块体体积预测模型 (图 18)提升了 3.6 %，实

际体积与预测体积具有较好的线性关系 (图 21)，说明

投影图像面积和形状特征的交互作用提升了块体体

积的预测精度。
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图 21    煤岩块体实际体积与模型预测体积

Fig.21    Actual volume and predicted volume of coal and rock
  

3.7　煤流表面体积含矸率计算

在体积预测的基础上，进一步对煤流表面体积含

矸率进行计算。利用综放开采“放−运”全过程高仿真

实验平台开展了放煤实验。对煤流图像进行图像分

析，得到煤流表面投影面积含矸率随放煤时间的变化

曲线，如图 22所示。在初始阶段 (0～12 s)，所有链速

条件下的含矸率均接近于零，表明岩石尚未显著混入

煤流；进入中期 (12～24 s)，高链速条件 (2.0 m/s 和
2.25 m/s)下含矸率迅速增长，增速显著高于中低链速，

表现出高链速驱动岩石加速混入的特性；在后期

( > 24 s)，高链速下的含矸率趋于稳定并达到较高水

平 (峰值为 70%～80%)，而低链速条件 (0.5 m/s  和
1.0 m/s)下，含矸率增长缓慢且最终维持在较低水平。
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图 22    煤流表面投影面积含矸率实测结果

Fig.22    Measured results of surface projection area-based rock

mixed ratio of coal flow

进一步利用式 (7)计算了煤流体表面体积含矸率，

并将对应时刻下煤流中的煤岩块体分别称重，通过密

度换算成体积，得到实测煤流体积含矸率，如图 23所

示。其中，伸长度与扁平度选用图 19中平均值近似

以降低计算复杂度。该实测的煤流体积含矸率是对

煤流整体进行的测量，包括煤流表面和煤流内部信息，

这也是图像识别智能放煤技术所需要的含矸率数据。

可以看出，表面投影面积含矸率与表面体积含矸率表

现出了较高的相关性，而这两者与实测体积含矸率相

关性稍差。这主要是因为高频震荡的投影面积含矸

率数据 (图 22)以及煤流中煤岩堆积叠压不利于煤流

内部信息预测，因此有必要进一步深入研究煤流煤岩

堆积特征，明确煤流瞬时含矸率、区间含矸率以及累

积含矸率等量化关系，以预测煤流内部含矸率，限于

篇幅将另文介绍。
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图 23    煤流表面体积含矸率计算结果

Fig.23    Calculated results of surface volume-based rock mixed

ratio of coal flow
  

4　讨　　论
 

4.1　微观形貌研究对煤流表面含矸率识别的指导

意义

以上研究表明，不同光照条件下，煤岩图像识别

精度差异主要源于煤与岩石的灰度和纹理特征的不

同及其随光照变化的规律[11, 15]。通过扫描电子显微

镜–X射线光电子能谱仪 (SEM-EDS)对煤块 (镜煤、

暗煤)和岩块 (泥岩、砂岩)的表面微观形貌进行研究，

为优化光源选择和提高煤流表面含矸率识别精度提

供依据。

其中，SEM扫描仪器型号为 ZEISS Gemini  300
超高分辨率场发射扫描电镜，能谱仪型号为 Oxford
Xplore 30，如图 24所示。

镜煤和亮煤组分表面光滑，断口多呈贝壳状或眼

球状，因其质地纯净的有机质组成，对光线产生镜面

反射，形成高亮反光区域，表现出规律性纹理特征。
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相较之下，暗煤因含大量矿物，表面粗糙，对光线产生

漫反射，图像颜色较暗淡，无明显高亮区域，如图 25a、
图 25b所示。

岩块 (如泥岩、砂岩)由于含有丰富矿物颗粒，表

面微观粗糙，对光线主要产生漫反射，缺乏煤块的光

泽特性。岩石图像中灰度较高、纹理简单，偶有撞击

形成的小面积高亮斑点，但对整体识别影响不大，如

图 25c、图 25d所示。

因此，煤岩在颜色和微观粗糙度上存在差异，并

会导致煤岩的灰度和纹理图像特征存在显著区别，可

以为确定合适光源提供微观依据。
 

4.2　光源波长对提高煤流表面含矸率识别精度的基

本原理

进一步使用紫外−可见−近红外分光光度计对不

同种类煤岩块体的相对漫反射率进行了测定，以确定

适用于煤流表面含矸率识别的合理光源波长，如

图 26所示。本实验所用波长为 390～780 nm，采样间

隔 1.00 nm，扫描速度 600 nm/min，设备型号为 HITA-
CHI UH4150。实验对象为图 25中用于 SEM-EDS测

试的 4个煤岩样本。

可以看出，随着波长的增大，煤和岩石的相对漫

反射率的变化趋势不同。煤的相对漫反射率随着波

长的增大逐渐减小，而岩石的相对漫反射率随着波长

的增大逐渐增大。

在同一波长下，不同种类煤岩的相对漫反射率不

同。在本实验涉及到的波长范围内，暗煤的相对漫反

射率始终大于镜煤的相对漫反射率，砂岩的相对漫反

射率始终大于泥岩的相对漫反射率，说明相比于镜煤

和泥岩，暗煤和砂岩的漫反射更强，这与人眼视觉感

受以及 SEM测试结果吻合。另外，随着波长的增大，

 

能谱仪

扫描舱室

处理器

操控面板

图 24    扫描电子显微镜–X射线光电子能谱仪设备示意

Fig.24    Scanning electron microscope-energy dispersive

spectrometer
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图 25    煤岩块体表面形貌

Fig.25    Surface morphology of coal and rock
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泥岩的漫反射率先后与镜煤、暗煤相交，也就是说在

这些波长条件下，泥岩分别与镜煤和暗煤具有相同的

相对漫反射率，煤岩相似的漫反射特征不利于图像

识别。

因此，除了照度参数外，在图像识别智能放煤技

术中，还可以考虑通过合理选择光源波长，尽可能放

大煤岩块体相对漫反射率的差异，增加煤岩块体图像

特征区分度，提高煤流表面含矸率识别精度。 

4.3　煤流表面含矸率识别研究展望

研究了煤流表面投影面积含矸率与煤流表面体

积含矸率，其中后者是以前者识别结果为基础，利用

体积预测模型计算得到。而这 2种含矸率均为某一

时刻的瞬时含矸率，这可以反映煤流实时信息。但研

究结果表明，煤流表面的瞬时投影面积含矸率在放煤

过程中呈高频震荡特征，若直接作为关闭放煤口的指

标，容易触发含矸率阈值，导致放煤口的过早关闭。

因此，有必要对瞬时投影面积含矸率进行预处理，降

低其高频震荡的影响，并基于此对累积体积含矸率进

行预测，与基于 BBR理论确定的关闭放煤口的合理

含矸率阈值 (比如 10%～15%)进行对比，决定是否关

闭放煤口。

在煤流表面体积含矸率预测过程中，煤岩块体的

形态学特征 (伸长度与扁平度)选取了平均值以简化

计算。在接下来研究中，有必要针对不同矿区、不同

种类煤和岩石块体建立形态学特征数据库，研究特定

开采条件下煤岩块体形态学特征统计学分布规律，进

而通过自适应赋参提高煤流表面体积含矸率预测

精度。

此外，煤流表面存在煤岩块体叠压现象，目前将

图像分割结果视为完整投影面，但未预测内部叠压部

分。因此，应科学界定煤流表面与内部范围，开展煤

岩块体叠压特征研究，探讨煤岩块体在当前投影面积

下的体积概率分布，以提高煤流表面体积含矸率预测

精度。此外，考虑融合 X射线荧光光谱 (X-ray Fluor-
escence  Spectrometer，XRF)、双能 X射线透射成像

(Dual Energy X-ray Transmission，DE-XRT)等技术，从

煤岩块体化学元素和密度等特征出发，为复杂环境下

图像识别技术含矸率的高精度识别与预测提供技术

保障。 

5　结　　论

1)基于多照度融合与光流场优化的方法显著提

升了煤岩图像分割性能。光流场技术通过精确圈定

煤流运动区域，有效剔除了刮板输送机两侧静止煤岩

的干扰，从而提高了含矸率计算的精度。结合合理设

置照度 (比如 17 730 lx)，复杂煤岩组合形式的 mAP@0.5
提升至 92.3%，验证了多照度融合和光流场优化技术

在复杂场景下对识别精度和算法适应性的增强作用。

2)构建了基于“尺寸+形状”特征融合的体积预

测模型，通过引入形状特征辅助尺寸特征预测，决定

系数由 0.941 6 提升至 0.969 2，显著提高了煤岩块体

体积预测的精度，为煤流表面体积含矸率的合理预测

提供了理论支持。

3)合理选择光源波长可以放大煤岩块体相对漫

反射率的差异，提高了煤岩图像特征的区分度；通过

正交投影结合最大面积投影的方法，将二维形态学特

征的偏差降低至 10% 以下，有利于三维形态学特征的

准确预测。

4)进一步开展煤岩块体在煤流中的堆积特征及

压覆规律的研究，有望构建更精确的煤流表面体积预

测模型。此外，结合煤岩块体的化学成分、密度等多

维特征，引入 XRF和 DE-XRT等技术手段，提高复杂

环境下图像识别智能放煤含矸率识别精度。
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