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Abstract: Image-based intelligent control of longwall top coal caving (LTCC) is a critical technology for achieving intelli-
gent coal mining. Its core lies in monitoring the rock mixed ratio (RMR) of coal flow to control the drawing opening.
However, challenges such as low illumination in underground environments, the irregular shapes of coal-rock particles,
and their accumulation and compression significantly hinder the prediction of RMR in coal flow. To address these issues,
this study focuses on the surface RMR of coal flow. A coal-rock image database was constructed under various illumina-
tion conditions to investigate the influence of illumination and coal-rock types on image segmentation performance. A
high-fidelity experimental platform for the “caving-transport” process in LTCC was developed, and a high-precision re-
cognition method for surface projection area-based RMR of coal flow under complex scenarios was proposed, based on
multi-illuminance fusion and optical flow optimization. Furthermore, the impact of different projection angles and meth-
ods on the extraction of two-dimensional morphological features of coal-rock particles was explored, and the quantitative
relationships between morphological features across dimensions were clarified. A “size + shape” feature fusion model was
developed to reasonably predict the surface volume-based RMR of coal flow. Finally, the proposed methods were valid-
ated using both laboratory and field data. The research findings indicate that as illumination increases, the recognition ac-
curacy of the two coal-rock combination forms initially increases, stabilizes, and then slightly decreases. By setting a reas-
onable illumination level (e.g., 17 730 Ix), the mAP@0.5 for the coal + mudstone combination improved from 88.7%
(3 180 Ix) to 92.3%. The introduction of multi-illuminance fusion and optical flow analysis further enhanced the recogni-
tion accuracy and adaptability of surface projection area-based RMR under complex scenarios. A reasonable selection of
light source wavelength can amplify the relative diffuse reflectance differences of coal-rock particles, increasing the distin-
guishability of image features. Moreover, appropriate projection methods improve the accuracy of predicting the projec-
tion area of irregularly shaped coal-rock particles, reducing the prediction error from 60% to less than 10%. By incorporat-
ing shape features into the volume prediction model, the prediction accuracy was significantly improved, with the coeffi-
cient of determination increasing from 0.941 6 (size-only model) to 0.969 2.

Key words: longwall top coal caving; intelligent control of drawing opening; rock mixed ratio; coal flow; coal and
rock morphology
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Fig.1 Schematic diagram of longwall top coal caving mining
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Fig.2 Coal and sandstone images
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Table 1 Basic information of database of images
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Fig.9 Measurement of two-dimensional form descriptors of the projection of coal and rock
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Fig.11 Segmentation result of coal and mudstone
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