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NO, formation of biomass co-firing with coal in two-stage drop-tube furnace

HOU Yan, YANG Fuxin, TAN Houzhang, XIONG Xiaohe, CHEN Falin
(MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China)

Abstract: The co-firing of biomass with coal is one of the technologies to reduce the carbon emission from the coal-fired
power plant. The position of biomass co-firing has a significant impact on NO, emission during the co-firing process.
Therefore, in order to study the effect of the biomass co-firing position and the temperature on the NO, emission, a two-
stage drop-tube furnace was used to study the NO, emission of biomass co-firing with coal from the primary combustion
zone and the burnout zone as well as the migration of fuel N. The results show that NO, emission behaviors are signific-
antly different when biomass is mixed from the primary combustion zone and the burnout zone. When biomass is mixed
from the primary combustion zone, NO, emission at studied temperature shows a decreasing trend with the increase of the

biomass co-firing ratio from 0 to 40%; with the increase of the over-fire air ratio, the lowest NO, emission occurs when the
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ratio is 0.33. When biomass is mixed from the burnout zone, the NO, emission decreases continuously with the increase of
the biomass co-firing ratio from 0 to 40% at the burnout temperature of 1 000 °C. At the burnout temperatures of 1 200 and
1400 °C, the NO, emission is lowest when the biomass co-firing ratio is 10%. There is a significant difference in the con-
version of fuel N to intermediate products of HCN and NH; during biomass co-firing in the burnout zone. At the studied
burnout temperature, when biomass is mixed in the burnout zone, the conversion rate of fuel N to HCN always increases
with the increase of biomass co-firing ratio. The conversion of fuel N to NH; increases with the increase of biomass co-fir-
ing ratio at the burnout temperature of 1 000 °C; when the burnout temperatures is 1 200 and 1 400 °C, the conversion rate
of NHj is the highest at biomass co-firing ratio of 10%. When the primary zone temperature is 1 200 “C and the burnout
temperature is 1 400 °C, about 94% of the fuel N is converted to N, and ash N, about 5% is converted to NO,, and less
than 1% is converted to HCN and NHj;. The co-firing of biomass can reduce the conversion of fuel N to NO, compared to
pure coal combustion. However, as the biomass co-firing ratio increases, the conversion rate of fuel N to NO, and ash N

increases, and the conversion rate of fuel N to N, decreases.

Key words: biomass co-firing; coal; two-stage drop-tube furnace; NO, emission; fuel-N migration
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Table 1 Proximate analysis and ultimate analysis of fuels
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Fig.1 A two-stage drop-tube furnace system
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the migration of fuel N to HCN and NHj; under staged mode

(primary combustion zone temperature: 1200 °C)
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