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Effects of Na/Ca/Fe intermetallic interactions on nitrogen transformations
in high-alkali coal pyrolysis

LIU Yiwen', WEI Lihong', ZHOU Yanling®, ZHAO Yonghao', SHANG Jifeng', LOU Kunkun'

(1. College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China; 2. Guiyang Engine Research Institute,
Aero Engine Corporation of China, Guiyang 550081, China)

Abstract: China Xinjiang high-alkali low-rank coal has the characteristics of low ash, high sodium content and high react-
ivity. Developing clean and efficient conversion technology for high alkali coal into high-value chemicals will have im-
portant strategic significance for solving its resources utilization and helping to achieve the “dual carbon” goal. The miner-
al components Na, Ca and Fe in high-alkali coal have catalytic activity in coal pyrolysis, which has a significant influence
on nitrogen transformation. There is still a lack of research on the effects of interactions between mineral components on
the thermal conversion mechanisms of fuel-N. This study aims to elucidate the effects of intermetallic interactions on ni-

trogen transformation during pyrolysis of high-alkali coal. The results have significant implications for formulating con-
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trol strategies of nitrogen distribution in gas, liquid and solid phases during the cascade utilization of high-alkali coal. Na,
Ca, Fe mono-metal and poly-metals were added to deashed coal by equal volume impregnation and sequential impregna-
tion methods, and nitrogen transformation was studied in fixed-bed pyrolysis of high-alkali coal. GC-MS, XPS and solu-
tion absorption method were used to quantitatively analyze the effects of mono-metals and polymetals on the distribution
of nitrogen-containing products in coal pyrolysis, and interactions between them were analyzed by comparing the results
of experiments results with theoretical calculations results. The effect of poly-metals on the pathway of N transformation
in pyrolysis of high-alkali coal was studied by analyzing yield/residual rate of nitrogen-containing products. The results in-
dicate that poly-metals usually exhibit an intermetallic antagonism on the migration of nitrogen into the gas phase, with
stronger inhibition of HCN, NH; than monometallic. The synergistic effects of Na/Ca and Fe/Ca significantly enhance the
conversion of N—6 and N—5 in char to heterocyclic nitrogen and amine-N in tar, which demonstrates stronger promotion of
nitrogen-containing compound formation in tar compared to mono-metallic systems. Furthermore, Na/Fe and Na/Fe/Ca
play a synergistic role for conversion of N-6 to N-Q in char though intermetallic interaction, thus promoting the fixation of
nitrogen in char.

Key words: high-alkali coal; pyrolysis; nitrogen transformation; sodium; calcium; ferrum; intermetallic interaction
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