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摘　要：近年来我国东部矿区发生了多起立井井筒倾斜变形及破损灾害，严重影响了矿井安全与生

产。针对厚含水松散层深立井倾斜破损灾害，以鲁南某矿深立井井筒 (800 m) 为研究对象，开展了

井筒倾斜变形监测，研究了井筒倾斜时空变化特征，分析了井筒倾斜主要影响因素；在此基础上，

基于深度学习理论，综合采用循环神经网络 (RNN)、长短期记忆网络 (LSTM)、门控循环单元

(GRU)、一维卷积神经网络 (1DCNN) 四种经典深度学习方法，构建了井筒倾斜变形预测模型，并

将预测结果与实测值进行对比，分析了井筒变形预测模型精度，研究了井筒整体和关键区域预测

效果，验证了模型可靠性，并开展了工程应用。研究表明：① 井筒倾斜主要发生在松散层，倾斜

值由浅到深线性减小、并偏向采空区一侧，最大为 352 mm，基岩层变形较小，最大为 88 mm；开

采引起厚松散层变形传播范围增大、底部含水层沿井壁渗流疏水及地下水渗流场的变化是导致井

筒倾斜变形的主要原因。② 模型与实测值 Spearman 相关系数最大为 0.978，最小为 0.867，4 种模

型与现场实测偏移量的最大差值为 0.043 m，平均绝对误差 EMA 在 0.003～0.009 m 内，均方根误

差 ERMS 在 0.004～0.011 m 内，整体预测效果以 1 DCNN 模型最优，主要倾斜方向 (偏向采空区一

侧的东西方向) 预测精度略低于变形量较小的方向 (南北方向)，且均能够满足工程需要。③ 井筒整

体预测曲线与实际倾斜方向一致，井口、松散层基岩交界面 EMA 与 ERMS 平均值均为 0.005 m、

0.006 m，井底精度略低，其对应值为 0.012、0.013 m，井筒特征区域与整体预测效果均表现良好，

表明基于深度学习的井筒变形预测模型具有良好的预测能力，研究成果在井筒注浆修复治理工程

中得到了有效应用，为井筒安全管理提供了技术参考和数据支撑，为类似工程提供了工程实践

经验。
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Abstract: In recent years, a number of vertical shaft tilt deformation and breakage disasters have occurred in the eastern
mining areas of China,  which have seriously affected mine safety and production. In response to the tilting and damage
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disasters of deep vertical shafts in thick water-bearing loose layers, the tilting and deformation monitoring of shafts was
carried out by taking the deep vertical shaft (800 m) of a mine in Lunan as the research object,  studying the spatial and
temporal change characteristics of shaft tilting, and analyzing the main influencing factors of shaft tilting; based on this,
based on the deep learning theory, four types of deep learning method, namely, recurrent neural network (RNN), long and
short-term  memory  network  (LSTM),  gated  recurrent  unit  (GRU),  and  one-dimensional  convolutional  neural  network
(1DCNN), were used. unit  (GRU), and one-dimensional convolutional neural network (1DCNN) to construct a wellbore
tilt deformation prediction model, and compare the prediction results with the measured values to analyze the accuracy of
the wellbore deformation prediction model, validate the reliability of the model, studied overall wellbore and critical area
prediction effects, and carry out engineering applications. The study shows that: ① The wellbore tilt mainly occurs in the
loose layer,  the tilt  value decreases linearly from shallow to deep, and is biased towards the side of the extraction zone,
with a maximum of 352 mm, and the deformation of the bedrock layer is smaller, with a maximum of 88 mm; the increase
in the range of deformation propagation in the thick loose layer caused by the mining, and the change of seepage hydro-
phobicity  of  the  aquifer  at  the  bottom along the  wall  of  the  well  and the  seepage field  of  the  groundwater  are  the  main
causes of the tilted deformation of the wellbore. ② The Spearman correlation coefficient between the model and the meas-
ured value is 0.978 at the maximum and 0.867 at the minimum;the maximum difference between the four models and the
field measured offsets is 0.043 m, the mean absolute error EMA is within 0.003–0.009 m, and the root mean square error
ERMS  is  within 0.004–0.011 m. The overall  prediction is  optimized by the 1DCNN model,  and the main tilting direction
(The prediction accuracy of  the  main inclined direction (east-west  direction,  which is  inclined to  the  side  of  the  mining
area) is slightly lower than that of the direction with smaller deformation amount (north-south direction), and all of them
can meet the engineering needs. ③ The overall prediction curve of the wellbore is consistent with the actual tilt direction,
and the average values of EMA and ERMS of the wellhead and loose bedrock interface are 0.005 m and 0.006 m. The accur-
acy of the wellbore bottoming is a little bit lower, with the corresponding values of 0.012 m and 0.013 m. The wellbore
characteristic area and overall prediction effect are good, indicating that the wellbore deformation prediction model based
on deep learning has good prediction ability. The research results have been effectively applied in the wellbore grouting
repair and management project, which provides technical reference and data support for the safe management of wellbore,
and provides engineering practical experience for similar projects.
Key words: mine vertical shaft；deflection deformation；deep learning；wellbore forecasting；neural network
  

0　引　　言

我国东部矿区煤炭资源赋存具有煤层埋藏深、松

散层厚且潜水位高等地域特征[1]。随着我国东部矿区

开采深度逐年增加，由于矿区活动、地质采矿条件及

井筒构造等众多因素，导致多地矿区井筒出现不同程

度的变形破坏[2]，其中以厚松散层薄基岩富含水地质

条件尤为突出。立井井筒作为地下矿山的咽喉要道，

其安全状态在煤矿生产中至关重要，一旦井筒发生变

形或破损，将直接影响井筒正常提升，还可能导致井

壁破损，严重危及矿井安全。如 2015年山东菏泽某

煤矿主、副井最大偏斜量分别高达 359 mm和 322 mm，

导致井筒无法正常提升，并对井壁安全造成了巨大威

胁[3]。

目前，矿区井筒变形预测方法主要可分为 3种：

① 基于力学机理的理论分析法。该方法通常采用弹

塑性理论，根据工程条件计算预测井筒变形位移。如

徐晓峰等[4]推出了井筒竖向附加力的解析解，对后续

井壁变形预测给予根据。独知行等[5]建立了井筒变形

的数学模型以便了解预测井筒变形规律。李文平[6]建

立了弹塑性分析模型用来计算井壁附加竖直位移。

杨维好等[7]根据弹塑性力学模型，推导了井筒应力与

位移解析解。② 基于经验参数的模型预测法。该类

方法通过建立包含概率积分法、时间函数法等在内的

数学模型，或按试验模拟及数值模拟方法建立矿区井

筒模型，进行实际开采过程及受力模拟，分析其受力

和位移的变化规律，推断出实际工程过程中的变化以

此进行后续变形的预测。如 HAN等[8]通过概率积分

法和 Knothe时间函数建立了井筒动态预测模型，程

桦[9]通过建立地层移动三维时空模型反演计算井筒倾

斜变形位移，高杰、郭洛、徐勇等 [10–12]采用 FLAC3D

软件对立井井筒及周围地层变形规律进行模拟预测

研究。③ 基于数据分析的机器学习法。该方法主要

基于计算机理论、非线性理论及数学思想，在计算机
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的辅助下，探究变形特征的学习及运算，不受常规地

质采矿条件及水文等复杂物理参数的限制，其原理中

的回归思想与时序预测任务紧密关联。如王坚[13]提

出了采用自适应 GM(1,1)模型进行地表沉降预测，

彭涛[14]将 BP神经网络与灰色系统联合，建立沉降预

测模型进行分析，唐艳梅[15]采用支持向量机模型建立

井筒变形–时间关系模型用于井筒灾害预测，胡安峰、

YUAN等[16–17]基于深度学习 LSTM模型对实测沉降

数据和矿区地表沉陷进行处理与预测，LIU等[18]建立

灰色–马尔可夫模型对矿区地表沉降进行预测研究。

上述方法主要关注于煤层开采活动下井筒及地

表整体变形破坏规律，一般是从井筒与地层相互作用

的角度，开展基于数理统计或物理机制等预测模型的

研究，对于解决井筒地表沉降及岩层区域移动变形预

测方面研究起到了积极作用。但相关研究大多没考

虑厚松散层薄基岩富含水条件下井筒深部区域变形

情况，或提出的变形预测模型相对复杂、应用范围有

限，无法精准预测不同介质条件下井筒各位置的变形。

近年来，随着深度学习在矿山开采沉陷变形领域的广

泛应用，与传统方法相比，深度学习能够在时间纬度

上捕获、储存更多的有效信息，可以迅速准确的拟合

出输入与输出间的关系，学习数据内在的逻辑并将其

运用在预测任务上。

笔者以鲁南某矿立井井筒为研究对象，针对厚松

散层薄基岩富含水地质条件，分析了立井井筒倾斜变

形时空特征及主要原因，在此基础上，基于深度学习

中循环神经网络 (RNN)、长短期记忆网络 (LSTM)、
门控循环单元 (GRU)、一维卷积神经网络 (1DCNN)
四种经典神经网络，构建了井筒变形预测模型，并将

预测结果与实测值进行对比，研究了井筒整体与局部

特征区域的预测效果，验证了井筒预测模型的可靠性，

并开展了工程应用，研究成果为井筒注浆治理修复提

供预警作用，从而获取准确可靠的井筒变形预期信息，

为井筒修复治理、安全管理提供重要参考价值。 

1　研究区概况
 

1.1　地质采矿条件

鲁南矿区巨野煤田具有煤层赋存深 (≥1 000 m)，
地层富水性强 (3个以上含水层)，松散层较厚 (400～
800 m)，松散层与基岩厚度比较小 (0.1～0.5)等特点。

研究区域位于巨野煤田中北部，为第四系覆盖的全隐

伏式井田，受区域构造及沉积环境因素影响，松散层

厚度由东向西逐渐增大，东西方向厚度差异显著，其

中上覆新生界松散层厚度为 530～580 m，大多以黏土、

砂质黏土、砂岩为主，基岩平均厚度为 260 m，大多以

泥岩、粉砂岩为主，属于典型的厚松散层薄基岩地质

条件。根据松散层岩土类型及富水特性，新生界松散

层自上而下依次划分为 3个含水层和 2个隔水层，基

岩段划分为 2个含水层和 2个隔水层。其中，松散层

第四系上部主要为砂质黏土含水层 (一含)，下部为强

隔水的砂质黏土层 (一隔)；新近系地层上部是以细砂、

粉砂和黏土质粉砂为主的含水层 (二含)，中部为平均

厚度 157 m的砂质、粉砂质黏土隔水层 (二隔)，下部

为平均厚度 40 m的第 3含水层 (底含)，具体情况见

表 1[19]。矿井设计生产能力 2.4 Mt/a，主、副立井井筒

均建于工业广场中央，其净直径分别为 5.0、6.5 m，井

筒深度分别为 853.0、882.0 m，2个立井井筒穿越的新

生界地层与基岩风氧化带部位均采用冻结法施工，基

岩段正常普通施工，井筒与井壁结构特征与参数见

表 2。
 
 

表 1    含、隔水层 (组、段) 划分

Table 1    Division of aquifer and aquifuge

地层 含隔水层
底板深度/m 厚度/m

检1孔(主) 检2孔(副) 检1孔(主) 检2孔(副)

第四系 含水层 85.60 85.20 45.75 37.17

隔水层 136.10 138.30 45.70 48.20

上第三系

上部含水层 333.60 334.30 74.70 78.10

中部隔水层 542.00 546.60 149.86 159.70

下部含水层 587.40 586.22 37.00 25.50

上石盒子组

风氧化带上隔 609.80 613.10 22.06 26.46

风氧化带中含 660.20 666.20 36.35 37.22

风氧化带下隔 674.00 680.39 13.60 13.88

风氧化带下含
上　　　697.40 698.10 18.12 17.53

下　　　874.77 883.48 49.12 68.14
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表 2    主、副井井筒特征

Table 2    Characteristics of the main and auxiliary wells

井筒 垂深/m 净径/m 冻结深度/m
松散层

厚度/m
基岩段井壁结构 冻结段井壁结构

主井 853 5.0 702 587.4 C50单层素混凝土井壁，

厚度1 300 mm

双层钢筋混凝土井壁，内壁1 000 mm，外壁1 150 mm，

内外壁之间铺设2层1.5 mm塑料夹层
副井 882 6.5 702 586.2 C50单层素混凝土井壁，

厚度1 300 mm

双层钢筋混凝土井壁，内壁1 200 mm，外壁1 200 mm，

内外壁之间铺设2层1.5 mm塑料夹层
 

经现场监测，该矿于 2015年发现：① 主、副井筒

预留的竖向可压缩性接头发生压缩闭合，井筒罐道梁

发生竖向弯曲；② 主、副井罐笼与井壁或其他装备的

安全距离不符合《煤矿安全规程》要求，罐道出现倾斜；

③ 井壁破裂部位主要发生在新进系松散层底部含水

层段，也有深入到其下的基岩强风化带内 0.5～2.0 m
内，一般破坏段高度在 1～15 m内；④ 破裂形态大都

呈现水平环状，破裂处出现渗水、涌水，井壁松散层段

拉开处发生不同程度破坏，存在固结水泥浆液，如图

1a所示；井壁基岩段在彼此接头相连处沿环向部分拉

开，拉开间距不等，如图 1b所示[20]。
  

(a) 表土段

(b) 基岩段

11号

12号

图 1    井筒区域破坏

Fig.1    Wellbore area damage
  

1.2　井筒倾斜监测

为保证矿区井筒安全生产，于 2015年 8月—
2023年 2月开展了井筒变形监测，以 2015年 8月为

第 1期，每间隔 3个月监测 1次，截止 2023年 2月累

计监测 30期。 

1.2.1　监测方法

针对主、副立井井筒复杂环境，为提高监测效率，

笔者自主研制了专用的井壁测量装置，该装置包括卡

槽、卡槽支脚、主体金属骨架与手持式激光测距仪，卡

槽用于固定两侧钢丝，卡槽支脚用于构造特殊导线角，

激光测距仪用于测量其到井壁点距离，具体结构如

图 2所示。
 
 

井壁点1

井壁
点2

井
壁
点
5

井壁点
3

井壁点
4

井壁点6

L

主体基准

卡槽 卡槽

L
1

L
3

L
2

L
4

L
5

L
6

卡槽支脚 卡槽支脚

钢丝
点位

钢丝
点位

测距仪

图 2    井筒平面测量装置

Fig.2    Wellbore plane measuring device
 

基于矿井生产现状，采用双垂线基准法结合特制

监测装置，开展矿区井筒变形监测，具体步骤如下：

(1)在不干扰提升设施及便于保护的前提下，在井

筒两内侧分别设置两条钢丝至井筒底部，确定其铅垂

平稳后，将钢丝固定形成双垂线基准，旨在提供井筒

变形监测的基准。

(2)在监测装置主体基准线上两端各选取一监测

点 (井壁点 1、6)，两侧法线方向上分别选取等间距 4
个监测点 (井壁点 2～5)，通过对近井控制点导线测量

计算 2根钢丝平面坐标，进而计算 6个井壁监测点坐

标，点位如图 2所示。

(3)在罐笼内部搭建监测作业平台，进入平台后先

将竖井中已固定好的钢丝嵌入卡槽钢丝点位，随后将

整个监测装置固定水平，选取 15～20 m为 1个测量

间隔，下放罐笼等间距测量测距仪中心到井壁点距离，

监测示意如图 3所示。

(4)监测作业时应注意：装置监测要求主体基准线

平直有刚度，且与测距仪光束垂直，主体基准线须平
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行两卡槽连线；两卡槽间距等于钢丝双垂线间距；数

据采集时应保证点位完整照射在井壁上，避免井筒内

部构筑物抵挡。 

1.2.2　数据处理

如图 4所示，L1，L2，…，L6 为骨架中心线上各点到

井壁内侧的水平距离；r1，r2，…，r6 为骨架中心线与测

距方向的水平夹角；S1、S7 分别为钢丝 A到 1号测距

仪、钢丝 B到 6号测距仪的距离，S2，S3，…，S6 分别为

各测距仪之间的距离。
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图 4    井筒变形测量原理

Fig.4    Measurement principle diagram of smeasuring device
 

以 A、B钢丝平面位置为已知点，按照导线进行

解算，得到各井壁点平面坐标。利用每个断面上的 6
个测点坐标，计算出每个断面的圆心坐标 (x,y)及半

径 R，进而得到井筒整体变形情况。其计算原理如下：

以井壁某一断面上各测点坐标为 (xi,yi)，其中， i=1，
2，…，6；截面中心坐标为 (x,y)，截面半径为 R，则：


(x− x1)2+ (y− y1)2 = R2

(x− x2)2+ (y− y2)2 = R2

· · ·
(x− x6)2+ (y− y6)2 = R2

(1)

以

x0 =

6∑
i=1

xi/6,y0 =

6∑
i=1

yi/6,R0 =

√
(x0− x1)2+ (y0− y1)2

为初值将式 (1)线性化，得到误差方程式 (式 (2)、
(3))为

X3×1 =

 δx
δy
δR

 , A6×3 =


(x− x1)/R0 (y− y1)/R0 −1
(x− x2)/R0 (y− y2)/R0 −1

...
...

...
(x− x6)/R0 (y− y6)/R0 −1


(2)

L6×1 =



R0−
√

(x0− x1)2+ (y0− y1)2

R0−
√

(x0− x2)2+ (y0− y2)2

...

R0−
√

(x0− x6)2+ (y0− y6)2


(3)

然后通过 Matlab软件，采用经典最小二乘法求解

得到井壁断面中心坐标及半径。选取井底拟合圆心

为基准，对比各监测断面圆心坐标与基准坐标偏差，

计算井筒各层平面上沿南北、东西方向上倾斜量，结

合井筒对应断面高度，可较为直观的了解井筒整体倾

斜变形情况[21–23]。 

1.3　井筒变形特征

监测发现，井筒自上而下发生不同程度的倾斜变

形，选取第 13～16期的监测数据，绘制了井筒倾斜变

形，如图 5所示。

随着井筒空间高度上升，主、副井倾斜变形呈现

以下特征：

(1)整体变形特征：在东西方向上，副井在基岩层

整体倾斜相对平稳，主要倾斜量在 20 mm以内，主井

在基岩层倾斜较大，变化显著，至松散层区域内，主、

副井整体倾斜值线性增加，并偏向西方向采空区一

侧，在井口附近达到最大值 352、282 mm；在南北方向

上，主、副井整体倾斜变化较小，整体向北缓慢倾斜，

在靠近井口处倾斜较为明显，其最大值分别为 54、
95 mm。

(2)局部变形特征：在井筒底部，井筒整体倾斜波

动较小均在 30 mm以内，仅在主井沿西方向倾斜量线

性增长，最大值达到 88 mm；在松散层基岩交界面，主

井沿西方向倾斜线性减小，由 88 mm减至最低值 0，
沿北方向倾斜局部增长至最大值 50 mm，副井整体在
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图 3    井筒监测示意

Fig.3    Schematic diagram of wellbore monitoring
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基岩交界面变化不受影响；在井筒井口，主、副井倾斜

速率较快，且在此处倾斜值增长至最大。

(3)倾斜差异简析：在松散层内，主井井筒倾斜值

由浅到深线性减小，至松散层基岩交界面减小为 0，而
在进入基岩层后，倾斜量沿西方向继续增加。由于开

采工作面均位于工业广场西侧，其中该矿 1301、1302
工作面终采线与主井直线距离分别为 858、1 000 m，

前期受主要活跃采空区影响较大，井筒发生向采空区

一侧倾斜，即在厚松散层内，井筒发生连续水平位移

变形，且随松散层厚度加深，沿西方向移动阻力增大，

位移逐渐减小；当主井进入松散层基岩交界面，松散

层土体密度和凝聚力进一步增加，致使井筒在该区域

内移动量趋近于 0；当主井深入至基岩层，由于松散层

与基岩层物理性质不同，岩层存在较大差异，上覆厚

松散层整体发生连续变形，在上部地层巨大推动力作

用下，致使原先稳定的基岩层发生向西方向相对滑移，

岩层土体在滑移一定距离后，在主井底部重新趋近

于 0。
综上可知，井筒倾斜主要发生在松散层内，倾斜

值由浅到深线性减小、并偏向西北 (采空区)一侧，而

基岩层内变形较小。 

1.4　井筒倾斜原因分析 

1.4.1　厚松散层地质条件的影响

当在厚松散层薄基岩下开采且采用垮落法管理

顶板，上覆基岩受厚松散层自重应力影响，在较短时

间内自下而上形成垮落带、裂缝带和弯曲带的“上三

带”分布模式，其中裂缝带迅速发展至岩层表面，造成

采空区上覆岩层大范围内发生垂直于层理面的裂缝

或断裂，进而导致上覆岩层、松散层及致地表发生较

大弯曲变形。相较于常规地质采矿条件 (松散层较薄

或无松散层的浅埋煤层)移动变形整体时间较短，而

厚松散层矿区地表变形表现为持续时间更长、下沉系

数更大、影响范围更广等特点。如：该矿 1303工作面

停采后 7个月内仍未进入衰退期，地表最大下沉值为
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Fig.5    Inclination change of main and secondary wells from 13th to 16th period
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2 541 mm，下沉系数达 0.92。
按现行《建筑物、水体、铁路及主要井巷煤柱留

设与压煤开采规范》，该矿区工业广场保护煤柱留设

综合移动角取 52°～55°。由于对松散层土体移动变

形缺乏深入研究，移动角取值过大，当开采深度达

700 m以上时，地表移动盆地主要影响半径超过

1 400 m[24–26]，按现行规范设计井筒保护煤柱尺寸过小，

致使井筒仍处于地表沉陷影响范围内。因井筒细长，

侧向抗弯能力弱，难以抵御厚松散层移动变形，故在

非对称开采条件下易发生向采空区一侧倾斜。现场

监测发现，井口处向采空区一侧最大水平移动值在

300 mm以上，在松散层内由浅到深线性减小，在进入

新近系地层后 (垂深 440～586 m)，土体强度较上部地

层明显提升，阻力增大，井筒移动量趋近于 0。在基岩

层内，因岩性强度较大，且采空区上覆岩层移动未波

及井筒，故井筒在基岩层内倾斜变形较小。

已有研究表明该段井筒横向最大挠度为 0.348 m，

井筒转动惯量为 337.3 m2，垂直应力小于屈服强度，上

部压力通过预留设的可压缩性接头被释放后出现变

形闭合，故井壁在垂直方向目前暂处于安全状态[27]。

同时考虑到松散层段井筒发生竖向压缩变形，而该压

缩变形导致接头处井筒强度变弱，纵向应力集中，抗

弯能力变弱，一旦发生横向拉伸，极易引起或加剧井

筒倾斜。 

1.4.2　地下水渗流场的影响

矿区东北和西南两侧地层相对较厚，松散层土体

内共有 3个含水层。其中，底部含水层直接覆盖于基

岩面上部，无厚隔水层阻隔。经井筒检测孔发现，基

岩面下风化带段发育垂向张性裂隙 11条，未探明的

基岩地层中可能存在更多裂缝，同时在地壳抬升过程

中，含水层裂隙发育良好，为地下水的径流和储存创

造了条件。

立井井筒松散层及部分基岩段采用冻结法施工，

当井筒周边地层完全解冻后，底含水体通过上述发育

的纵向裂隙，经过井下构筑物、井筒井壁进行疏水，矿

井涌水疏放量由建井初期 50 m3/h增长为煤层开采影

响后的 500～600 m3/h，疏放水量提高近 10倍[28]，矿

区底含水位大幅降低。其中，井筒基岩段以上含水层

水位下降，对应水压降低，对上部松散层支撑力减小，

进一步加剧了岩土体变形。

在后期开采过程中，地下水流通过地层发育裂缝、

断层进行沟通，开采区域内原地下水渗流场受到显著

干扰。一方面，开采导致底部含水层内地下水不断通

过岩层裂隙流向采空区，另一方面，地下水通过破损

井筒持续渗漏，地层因含水层水位下降不同、地层厚

度与性质不一、含水层水流方向等因素，导致工业广

场地表的不均匀沉降进一步增大，进而加剧井筒倾斜

变形。同时，含水层水流持续性冲击井筒井壁及流过

井壁后产生的真空负压，亦会导致井筒产生不同程度

的倾斜[29]。 

2　基于深度学习的井筒变形预测模型
 

2.1　预测方法

上述研究表明，井筒倾斜已对矿区安全生产造成

了严重威胁，亟需实时获取井筒变形动态信息，并准

确预测井筒变形量，为井筒安全预警提供数据依据。

传统方法难以捕捉非线性数据间的时空相关性，预测

效果不佳，而深度学习方法具有优异的数据处理能力

和良好的时空序列预测效果，本文选用深度学习方法

进行预测。 

2.1.1　技术路线

结合井筒倾斜变形中单变量短时序的数据特征，

采用 4种深度学习神经网络，构建了井筒变形预测模

型。研究整体可由数据输入、神经网络构建、网络训

练、网络预测、数据输出 5个阶段组成，如图 6所示。

首先，对井筒变形数据进行预处理以满足网络输入要

求；然后选取循环神经网络 (RNN)、长短期记忆网络

(LSTM)、门控循环单元 (GRU)、一维卷积神经网络

(1DCNN)四种神经网络进行构建；其中，网络训练采

用 Adam优化算法；然后采用迭代方法逐点进行预测；

最终输出变形预测结果。
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Fig.6    Technical route of wellbore deformation prediction

research
  

2.1.2　数据预处理

首先采用上述双垂线基准法结合特制监测装置，

进行井筒变形监测，自上而下每隔 10～20 m观测一

次，总共测量 65处，分别测量各监测点至 6个井壁点

的水平距离 (图 2)，按照式 (1)—式 (3)逐步计算得到
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井筒各监测点处的中心坐标及半径，获取井筒东西方

向、南北方向 (每方向 80组数据，单期合计 160组)各
期倾斜值。

其次，为获取高质量训练样本，对原始工程数据

进行预处理，选取副井井筒 2015年 8月—2023年 2
月共 30期实测数据为样本，以井筒垂深–7 m处实测

值为例，见表 3(期间 1～8、18～27两个时间段内井

筒监测数据变化较小，故省略)。将井筒变形数据按

不同时期分为 X 个样本数据和 Y 个检验数据，将 X
个样本数据用作训练数据输入模型，且应满足相应约

束条件。考虑到变形时序的数量级对模型训练效果

影响，对每个样本数据进行标准化处理，且定义输出

序列长度为 1，通过前 (t−1)个时刻变形信息预测第 t
时刻变形。

 
 

表 3    主、副井各期倾斜实测值 (垂深–7 m 处)
Table 3    Measured values of inclination in each phase of the auxiliary well (at a vertical depth of –7 m)

监测期数 1期 8期 9期 13期 14期 15期 16期 17期 18期 27期 28期 29期 30期

副井/

mm

南北

方向
0.081 0.09 0.061 0.068 0.065 0.059 0.056 0.05 0.046 0.044 0.042 0.040 0.040

东西

方向
−0.292 −0.289 −0.259 9 −0.266 −0.264 −0.265 −0.263 −0.26 −0.263 −0.262 −0.267 −0.263 −0.262

主井/

mm

南北

方向
−0.03 −0.066 −0.051 −0.054 −0.051 −0.035 −0.04 −0.039 −0.037 −0.039 −0.036 −0.035 −0.033

东西

方向
–0.348 –0.353 –0.316 –0.335 –0.332 –0.303 –0.308 –0.305 –0.305 –0.310 –0.314 –0.311 –0.306

 

经现场监测发现，主、副井筒在进行注浆修复治

理后，其倾斜变形逐渐减缓并趋于稳定，后期东西方

向倾斜值分别为 305、260 mm，南北方向倾斜值分别

为 40、35 mm，井筒整体倾斜有效减缓。为此模型选

取时，为更好地判别井筒倾斜变形关键信息，探究输

入序列的内在联系，提高模型预测的效率与精度，本

文选取的 4种经典深度学习网络模型，其时序预测性

能表现优异，且模型结构简洁，均能够满足研究需要。 

2.1.3　网络训练与预测

该模型整体框架在 python3.8的环境下创建，使

用深度学习框架 PyTorch  V1.12.1，网络训练采用

Adam优化算法以及 EMS 损失函数进行迭代优化参数

和梯度更新，网络预测则采用迭代的方法逐点进行

预测。

为探寻最优的学习率，在网络训练环节，设定初

始学习率分别为 0.1、0.01、0.001、0.000 1，结果表明，

当学习率为 0.001时预测值与实测值方差最小

(0.003 m2)，且模型中的 Adam优化器自身可自适应调

整学习率变化，无需设定学习率衰减值，故最终设定

初始学习率为 0.001。
同时考虑到训练数据量相对较少，为防止训练过

程中出现过拟合，首先应尽可能减少模型的参数数量，

使得各个模型网络层数在 1～2层以内，每层神经元

个数相应减少至 64；其次采用早停法，损失超过 3轮

不再下降时停止训练，避免损失出现较大波动；另外

训练时每 100轮保存一次模型权重，最大训练轮数为

500，训练结束后共保存多个模型权重，并采用十折交

叉验证法评估每个权重的泛化性能，选择泛化性能最

优权重作为最终模型权重。 

2.2　深度学习网络模型 

2.2.1　循环神经网络 (RNN)
循环神经网络 (RNN)是一种用来建模序列化数

据的主流深度学习模型，其优点在于能够处理任意长

度的输入，捕捉时间序列中的依赖关系。其中，在 t 时
刻时，隐藏单元 S 接收网络前一时刻的隐藏单元值

St－1 和当前输入数据 Xt，并通过隐藏单元值计算当前

时刻输出[30–31]，如图 7所示。基于上述原理构建了相

应的 RNN模型，该模型主要由一层 RNN层和一层全

连接层组成，RNN层中隐藏层数量为 2，且每个隐藏

层由 64个神经元组成。 

2.2.2　长短期记忆网络 (LSTM)
长短期记忆网络 (LSTM)为传统循环神经网络

(RNN)的一种流行变体，可解决 RNN训练过程中的

梯度消失与爆炸问题，其隐藏层作为整个 LSTM网络

的核心，由多个 LSTM细胞单元组成，其结构如图 8
所示[32]。图中为一层隐藏层中的 3个细胞单元，Xt 为

样本 t 时刻输入值，ht 为相应细胞单元的隐含状态输

出，在每个细胞单元中依次进行数据输入、信息遗忘、

细胞状态更新以及隐含状态输出[33]。基于上述原理

构建了相应的 LSTM模型，该模型主要由 1层 LSTM
层和 1层全连接层组成，LSTM层中隐藏层数量为 2，
且每个隐藏层由 64个神经元组成。 

2.2.3　门控循环单元 (GRU)
门控循环单元 (GRU)是 LSTM的优秀变体，由
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更新门和重置门 2部分组成，相较于 LSTM参数更少，

网络结构更简单，更容易训练和缓解过拟合问题，其

内部结构如图 9所示[34]。GRU中更新门确定上一隐

藏层状态中记忆信息，重置门确定上一时刻隐藏层中

遗忘信息，再确定当前记忆内容与当前时刻隐藏层保

留的信息。基于上述原理构建了相应的 GRU模型，

该模型主要由一层 GRU层和一层全连接层组成，

GRU层中隐藏层数量为 2，且每个隐藏层由 64个神

经元组成。
 
 

x
t

h
t

~

h
t−1

h
t

tan h

r
t

z
tσ σ

1−

更新门 重置门

图 9    模型 GRU内部结构

Fig.9    Model GRU internal structure diagram
  

2.2.4　一维卷积神经网络 (1DCNN)
一维卷积神经网络 (1DConvolutional Neural Net-

work)主要用于处理一维序列数据，其优势在于能够

自动提取数据特征，更好地处理序列数据中的局部关

系，其基本结构由输入层、一维卷积层、一维池化层和

全连接层组成。1DCNN先通过可训练的卷积核对输

入数据进行特征提取，使用激活函数对特征图进行非

线性变换，再将卷积层输出进行降维，在一系列卷积

和池化操作下，特征图被展平为一维向量，最终输入

到全连接层中进行变形预测[35]。为此，基于上述原理

构建了相应的 1DCNN模型 ，该模型主要由 3层

1DCNN层和 2层全连接层组成，其中第 1～3层卷积

核数量分别为 32、64、128，卷积核大小、步幅均为 1，
且均采用 ReLu激活函数进行非线性变换。 

3　模型对比与精度评价

为对比研究深度学习中网络模型的应用效果，以

第 1～26期东西方向和南北方向上井筒变形实测数

据为样本，将井筒变形时序数据输入模型层中进行特

征学习，采用构建的 4种深度学习预测模型，预测

第 27～30期井筒变形数据，并与井筒实测数据进行

对比，计算预测值与实测值间的相关系数，评价预测

模型精度指标，研究模型整体与关键区域预测效果，

验证深度学习网络模型在井筒变形预测方面的可靠性。 

3.1　相关性分析

为明确深度学习网络模型整体预测效果的可行

性，以井筒第 27～30期实测值为基础，进行各模型预

测值与实测值间的相关性分析。考虑到井筒倾斜变

形值不符合正态分布且为非线性关系，为此采用

Spearman相关系数计算各模型间的相应系数，对比分

析了井筒东西方向、南北方向上各模型预测效果，具

体情况见表 4。
从表 4可知，模型预测结果中相关系数最低值为
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图 7    循环神经网络 (RNN)网络结构

Fig.7    Network structure of recurrent neural network prediction
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Fig.8    Unit structure of LSTM hidden layer
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0.867，最高值为 0.978，其中南北方向上相关系数平均

值为 0.868，略低于东西方向上平均值 0.949，4种模型

预测平均值为 0.909，整体呈现高度显著相关。其中，

模型相关系数大小排序为 1DCNN >  RNN≈GRU >
LSTM，以模型 1DCNN效果最优，相关系数平均值为

0.948，RNN和 GRU两者接近，LSTM模型效果较弱。

表明 4种井筒变形预测模型效果良好，相关系数高度

显著相关，能够满足变形预测的需求。 

3.2　精度分析

为评估深度学习各个网络模型预测精度，研究使

用 2种精度评价指标，分别是均方根误差 ERMS(Root
Mean Square Error)和平均绝对误差 EMA(Mean Abso-
lute Error)，以此分析模型预测精度。

ERMS =

√√
N∑

t=1

(yt − ỹt)2/N (4)

EMA =
1
N

N∑
i=1

|yi− ỹi| (5)

ỹt其中，yt 和 分别为对应时刻的变形观测值和预

测值，N 为测试数据集的个数。ERMS 与 EMA 范围为

[0,+∞)，当指标 < 0.1时，模型预测效果优良，其能够准

确反映真实数据的规律；当指标在 0.1～1间，模型预

测效果良好，能够较好反映真实数据的规律；当指标 >
1时，模型预测效果差，即误差越大，指标越大。通过

对井筒变形预测模型进行第 27～30期精度评价，评

价指标如图 10所示。
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图 10    井筒预测模型评价指标

Fig.10    Evaluation metrics for wellbore forecasting models
 

由图 10可知，4种模型中，EMA 最小值为 0.003 m，

最大值为 0.009 m，模型整体平均值为 0.005 m，其中

东西方向 EMA 平均为 0.007 m，略高于南北方向平均

值 0.005 m；ERMS 最小值为 0.004 m，最大值为 0.013 m，

模型整体平均值为 0.007 m，其中东西方向 ERMS 平均

值为 0.010 m，高于南北方向平均值 0.005 m两倍。由

于井筒偏向采空区一侧，以东西方向倾斜为主，其倾

斜量在 0～350 mm以内，而南北方向倾斜量在 0～
88 mm以内，两者变形量整体相差较大。东西方向上

EMA、ERMS 分别高于南北方向上 0.002、0.005 m，当东

西方向上指标增大，对应精度减小，其略低于南北方

向，同时 4种模型整体预测精度排序为 1DCNN >
RNN > GRU > LSTM，以 1DCNN效果最优，上述表

明 4种预测模型指标评价表现良好，模型整体预测精

度高。 

3.3　预测结果分析

调用训练好的预测模型，输出不同时期井筒变形

值，将井筒东西方向、南北方向第 27～30期预测值与

 

表 4    Spearman 相关系数

Table 4    Spearman’s correlation coefficient table

预测期数 27期 28期 29期 30期

网络模型 RNN LSTM GRU 1DCNN RNN LSTM GRU 1DCNN RNN LSTM GRU 1DCNN RNN LSTM GRU 1DCNN

相关

系数

南北方向 0.927 0.918 0.919 0.933 0.947 0.924 0.943 0.946 0.952 0.926 0.953 0.962 0.899 0.893 0.867 0.899

东西方向 0.917 0.895 0.919 0.927 0.943 0.912 0.942 0.970 0.976 0.970 0.970 0.972 0.973 0.959 0.975 0.979
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实测值进行纵向剖面对比，分析井筒整体预测效果，

如图 11所示。

由图 11可知，4种模型整体预测曲线高度相似，

与井筒实际倾斜量接近一致。其中，在南北方向上，

模型整体倾斜程度较小，监测点位最大误差仅为

0.024 m，整体误差小，曲线非线性拟合良好，且在井筒

井口关键区域预测准确，可有效表示井筒空间变化趋

势；在东西方向上，井筒底部出现相对偏差，偏差程度

随预测期数增加而逐渐减小，当井筒高度上升，4种模

型预测曲线之间差异逐渐减小且趋近于实测值，在井
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图 11    模型预测效果对比

Fig.11    Comparison chart of model prediction effect
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筒埋深 (0～–500 m)内接近吻合。其中，井筒主要倾

斜区域 (厚松散层和井筒井口)预测曲线高度重合，预

测效果表现良好，以 1DCNN模型效果最优，表明 4种

深度学习预测模型均能有效呈现预期时间厚松散层

立井井筒空间变形特征，验证了深度学习在井筒预测

方面的良好性能。

为进一步研究模型在井筒关键区域的预测效果，

选取井口、松散层与基岩交界处、井底 3个区域位置

(上下间距 100 m，如图 11中红色矩形)，结合井筒横

向变形特征 (以第 27期为例，如图 12所示)，对比主要

倾斜方向 (东西方向)上的预测模型误差，并给出了 4
种模型的精度评价指标，见表 5。

 
 

东西y方向/mm 东西y方向/mm东西y方向/mm

(a) 井口 (-7 m) (b) 松散层基岩交界面 (-497 m) (c) 井底 (-787 m)

注: 井筒半径已缩减1/300。
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图 12    井筒横向变形对比图 (27期)

Fig.12    Comparison of transverse deformation of wellbore(27 period)
 

 
 

表 5    特征区域精度评价

Table 5    Characterization area accuracy evaluation table

预测模型及期数
RNN LSTM GRU 1DCNN

27 28 29 30 27 28 29 30 27 28 29 30 27 28 29 30

EMA/m

井口 0.004 0.005 0.004 0.005 0.006 0.007 0.003 0.002 0.004 0.004 0.003 0.001 0.004 0.003 0.004 0.003

交界处 0.005 0.007 0.004 0.005 0.004 0.007 0.004 0.001 0.004 0.007 0.004 0.001 0.004 0.005 0.004 0.001

井底 0.015 0.013 0.009 0.008 0.016 0.014 0.011 0.010 0.016 0.013 0.011 0.003 0.017 0.015 0.011 0.003

ERMS/m

井口 0.005 0.006 0.005 0.004 0.008 0.008 0.004 0.003 0.005 0.005 0.004 0.001 0.004 0.003 0.005 0.003

交界处 0.007 0.008 0.005 0.005 0.005 0.008 0.004 0.001 0.006 0.008 0.004 0.001 0.004 0.006 0.004 0.002

井底 0.018 0.015 0.010 0.010 0.019 0.017 0.013 0.003 0.019 0.016 0.013 0.003 0.020 0.017 0.012 0.003
 

由表 5和图 12可知：① 井口和松散层基岩交界

面处 EMA、ERMS 平均值分别为 0.005 m、0.006 m，预测

精度较高：② 井底处 EMA、ERMS 平均值分别为 0.012 m、

0.013 m，精度略低；③ 4种模型整体预测精度排序为：

1DCNN≈GRU > RNN > LSTM，以 1DCNN效果最优，

其对应 EMA、ERMS 平均值分别为 0.006 m、0.007 m，

RNN与 LSTM效果次之。上述表明 4种预测模型对

3个关键特征区域拟合效果良好，能够理想地捕捉时

间序列数据的局部变化，在处理井筒变形时间序列数

据时具有优异性。 

4　工程应用
 

4.1　工程背景

以两淮某煤矿为研究区域，进行井筒变形修复治

理，该矿区于 2004年正式投产，一期设计生产能力为

150万 t/a，井筒净直径为 6.5 m，最大井壁外直径为

8.2 m，井筒最大埋深为 357 m。其中，煤田上覆松散

层厚度较大，地层多被第四系冲、洪积平原所覆盖，属

于全隐蔽式煤田，且井田松散层中含有 4个含水层组，

地层富水性强，水体间存在不同程度水力联系，与鲁

南矿区巨野煤田地质采矿条件相类似。经现场实测，

井壁多处发生出水灾害，其中埋深–94、–118 m处出

水量分别为 1.5～2.0、4 m3/h，且井筒发生不同程度的

倾斜变形。为监测井筒安全状态，根据煤矿副井相关

设计准则，确定在副井内层井壁上布设光纤光栅应变

计，每层监测水平布设 8个 (图 13)，实现井壁混凝土竖

向、环向应变监测，并根据监测结果，对副井井壁竖向、

环向应力进行计算分析，实时评估井筒受力变形状态。 
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4.2　井筒变形预测

深度学习未对数据的统计属性进行任何预先假

设，且神经网络能够从当前数据中推断出其内在联系，

因此基于上述已有的井筒变形预测模型，开展矿区井

筒修复治理。通过井筒光纤光栅监测系统实时监测

和在线传输井壁应变信息，分析处理井壁生产运行时

实际监测数值，以 2022–11–29—2022–12–07累计 36
期应力应变监测值作为训练样本，为更好地进行应力

预测，提高模型的准确率，选取上述预测效果最优的

1DCNN神经网络，在已训练模型的基础上采用井筒

应力应变数据进行迁移学习，预测井壁破损变形严重

区域 (埋深–50～–130 m)动态信息，获取 12月 8日

至 9日井壁应力变化，如图 14所示。

根据混凝土井壁原始受力状态，考虑平面问题和

自重问题，参考荷载相关系数，确定井筒破坏预警值，

对井筒井壁进行环向应变预警和竖向应变预警。由

图 14中可知：在预测期内，井壁环向、竖向应变量整

体呈现大幅增长。其中，井下–115、–123 m处环向应

变明显增加，最大值分别增长至–50、–120×10–6，–85 m
处较小，整体在±20×10–6 以内，而井下–50 m环向应变

 

井筒外刚筋井筒外缘

井筒内缘

井筒内刚筋

W
E

S

N

光纤光栅应力传感器 (环向)

光纤光栅应力传感器 (垂向)

图 13    监测水平元件布设示意

Fig.13    Schematic diagram of the layout of the components on

the monitoring level
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图 14    应变监测及预测变化

Fig.14    predicted changes in stress monitoring
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在 12月 8日达到 65×10–6 左右，临近 3级警戒值的

80%；在竖向方向上，井下–50、–80、–115及–123 m四

个层位竖向应变虽明显增加，但整体范围在±50×10–6

以内，相较于井壁各级预警值相对稳定。综上表明，

井筒–50～–130 m内应变显著变化，分析认为该区域

井筒井壁最易发生破坏和倾斜变形灾害。

基于上述预测值，结合井壁出水灾害，对井筒预

计破损区域进行注浆充填治理，工程于 2022年 12月

底完工，共完成钻探注浆孔 9个，最终注浆工程量

130.9 m3。其中，井筒出水点位已有效封堵，井筒倾斜

变形得到了有效减缓，井壁竖向、环向应力均下降到

正常范围。综上表明，井筒注浆工程治理效果良好，

提高了井筒受注段强度，保护了矿区安全生产，研究

成果在井筒注浆修复治理工程中得到了有效应用，为

矿井安全管理提供了技术参考与工程经验。 

5　结　　论

1)针对厚含水松散层深立井倾斜破损灾害，以鲁

南某矿深立井井筒 (800 m)为研究对象，开展了井筒

倾斜变形监测，研究了井筒倾斜时空变化特征，分析

了井筒倾斜主要影响因素，研究结果表明井筒倾斜

主要发生在松散层，倾斜值由浅到深线性减小、并偏

向采空区一侧，基岩层变形较小；开采引起厚松散层

变形传播范围增大、地下水随地层裂隙渗漏、底部含

水层沿井壁渗流疏水是导致井筒倾斜变形的主要

原因。

2)在此基础上，基于深度学习理论，综合采用长

短期记忆网络 (LSTM)、循环神经网络 (RNN)、门控

循环单元 (GRU)、一维卷积神经网络 (1DCNN)四种

经典深度学习网络，构建了井筒倾斜变形预测模型，

并将预测结果与实测值进行对比，分析了井筒变形预

测模型精度，研究了井筒整体与局部关键区域预测效

果，结果表明 4种模型预测值与实测值最大偏差为

0.043 m，EMA 在 0.003～0.009 m内，ERMS 在 0.004～
0.011 m内，模型与实测值相关性 Spearman系数最大

为 0.978，最小为 0.867，均能够满足工程需要，且整体

预测效果以 1 DCNN模型最优；主要倾斜方向 (偏向

采空区一侧的东西方向)预测精度略低于变形量较小

的方向 (南北方向)。
3)井筒整体预测曲线与实际倾斜方向一致，井口、

松散层基岩交界面 EMA 与 ERMS 平均值分别为 0.005 m、

0.006 m，井底对应值为 0.012 m、0.013 m，井筒整体、

关键区域预测效果均表现良好，表明基于深度学习的

井筒变形预测模型具有良好的预测能力，研究成果在

井筒注浆修复治理工程中得到了有效应用，为井筒安

全管理提供了技术参考和数据支撑，为类似工程提供

了实践经验。
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