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Modeling of ash agglomerating fluidized bed gasifier based on
particle agglomerating

ZHANG Jiaqi', CAO Zhikai"?, ZHOU Hua'" >, ZHANG Quancong"*

(1. Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China;

2.8chool of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China)

Abstract: Fluidized bed gasification technology has wide applications on coal industry due to its excellent mixing and
heat transfer performances. With the influence of strong gas-solid mixing, char content of discharged ash will increase at
high temperature. The operating temperature of traditional fluidized bed gasification is low to decrease the carbon loss, but
it will lead to a shortage of gasification efficiency. As a result, the ash agglomerating fluidized bed gasification allowing
limited particle agglomeration is proposed to increase operating temperature. The agglomeration size is the core of ash ag-
glomerating gasifier so it is important to investigate the process of ash agglomeration. Expensive costs will be required if
the research of complicated particle behavior in the gasifier depends on experimental analysis only. Thus, it is necessary to
combine reactor modeling with experiment to improve research efficiency. However, the actual reaction and transport pro-

cess of ash agglomerating gasifier cannot be described by existing models because the particle agglomeration was neg-

WFs HEA: 2024-01-07  SRERE: S/hiF  REHRE: SN DOL 10.13225/j.cnki.jecs.2024.0026

EEWA: HER AP BhIH (21576228)

TEE BT IKEF (1998—), H, i THM A, M55 . E-mail: jqz129@163.com

BIWAEE : TRAUE (1992—), 5, )P, i1 E-mail: 2022175104@xmu.edu.cn

S AR KRR E, B AkHL, AR, S5 BT URL L RAT o B I IR A R S A A 0], e 4R L 2025, 50(3):
1781-1793.
ZHANG lJiaqi, CAO Zhikai, ZHOU Hua, et al. Modeling of ash agglomerating fluidized bed gasifier based on
particle agglomerating[J]. Journal of China Coal Society, 2025, 50(3): 1781—1793.



https://doi.org/10.13225/j.cnki.jccs.2024.0026
mailto:jqz129@163.com
mailto:2022175104@xmu.edu.cn

1782 # %

F #®

2025 4F55 50 4

lected and particle size was average during the modeling process. In this paper, a novel model for ash agglomerating fluid-

ized bed gasifier was proposed: (D the gasifier is divided into bubbling region consisting of bubble and emulsion phases,

and freeboard regarded as pseudo-homogeneous phase; ) the particle agglomeration is described by the integration ag-

glomeration mechanism considering the particle agglomerating phenomenon, and the initial size distribution of particle.

The model was validated according to the comparison that the deviation of simulation results and practical data is within

10%. Finally, the agglomeration size and carbon conversion with different oxygen-coal ratio was calculated by the model.

With the agglomeration size reaching the critical value, the maximum carbon conversion is observed. The fluidization of

agglomeration cannot keep if the agglomeration size exceeds the critical value.

Key words: ash agglomerating fluidized bed gasifier; mathematical modeling; initial size distribution of particle; ag-

glomeration size; carbon conversion
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Table 3 Coal particle size distribution in the gasifier

B B2
L% /mm

i b Bt 5y 40/% i L it 45 /%

6.68 0 0

3.33 21.6 0.1

1.40 27.6 235

0.83 20.9 293

0.42 134 20.5

0.21 8.3 14.2

0.11 44 8.2

0.053 1.9 2.4
<0.053 1.9 1.8

[ ETZR AR 1.078, BIZMAE45%0 m & 1.078, [A]
A 4R 5 A bR i A S —0.804, RIFIL S —min dsy Ky
—0.804, YETM >R dsy M 2.108 mm. Hy I Al 7584 1
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Table 4 Operating conditions of gasifier

miH B B2
SALY ER/m 0.20 0.20
BB S1/MPa 0.80 1.42
PR (kg - b 53.10 161.80
PERH R/ (kg - h ) 59.60 107.10
PR/ (kg - h ) 51.64 75.72
PR/ (kg - h 99.20 194.50
JRii/m 0.95 0.85

FRAE S/ (m - 57 0.85 0.77
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Table 5 Proximate and ultimate analysis of coal
Tl 53 #H1/% TCE %
WiH
FC A 14 M C H e} N S
B 52.86 9.40 36.34 1.40 83.62 5.62 6.38 1.56 2.82
A2 43.32 9.07 3231 15.30 74.53 5.16 18.14 1.16 1.01
x6 AT AsHR
Table 6 Proximate analysis of ash
TRy 5381/%
T H
Si0, Al,O5 Fe,0; TiO, Ca0 MgO K,0 Na,O P,0s SO,
R 4420 20.30 19.00 0.67 6.26 1.07 1.43 0.91 0.39 420
B2 38.45 17.27 9.30 0.62 13.91 3.95 0.33 0.39 0.33 14.76
1
T 5
®7 RRER R 1.077 8
Table 7 Ash melting point OF [ ik —0.803 5
R 0.999 29
i H X H2 S-1t
<
AR /K 1399.7 1444.1 = R
= oL
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e L Fitting curve
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TSI /K 1505.2 1549.7 -4+
-3 -2 -1 0 1 2
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Fig.3 Fitting curve of the Rosin-Rammler distribution function
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Fig.5 Simulation results for case 1
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